Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/lcms2/src/cmsgamma.c
4391 views
1
//---------------------------------------------------------------------------------
2
//
3
// Little Color Management System
4
// Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
#include "lcms2_internal.h"
27
28
// Tone curves are powerful constructs that can contain curves specified in diverse ways.
29
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
30
// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
31
// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
32
// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
33
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
34
// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
35
// be called with the type id as a negative value, and a sampled version of the reversed curve
36
// will be built.
37
38
// ----------------------------------------------------------------- Implementation
39
// Maxim number of nodes
40
#define MAX_NODES_IN_CURVE 4097
41
#define MINUS_INF (-1E22F)
42
#define PLUS_INF (+1E22F)
43
44
// The list of supported parametric curves
45
typedef struct _cmsParametricCurvesCollection_st {
46
47
cmsUInt32Number nFunctions; // Number of supported functions in this chunk
48
cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types
49
cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function
50
51
cmsParametricCurveEvaluator Evaluator; // The evaluator
52
53
struct _cmsParametricCurvesCollection_st* Next; // Next in list
54
55
} _cmsParametricCurvesCollection;
56
57
// This is the default (built-in) evaluator
58
static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
59
60
// The built-in list
61
static _cmsParametricCurvesCollection DefaultCurves = {
62
10, // # of curve types
63
{ 1, 2, 3, 4, 5, 6, 7, 8, 108, 109 }, // Parametric curve ID
64
{ 1, 3, 4, 5, 7, 4, 5, 5, 1, 1 }, // Parameters by type
65
DefaultEvalParametricFn, // Evaluator
66
NULL // Next in chain
67
};
68
69
// Duplicates the zone of memory used by the plug-in in the new context
70
static
71
void DupPluginCurvesList(struct _cmsContext_struct* ctx,
72
const struct _cmsContext_struct* src)
73
{
74
_cmsCurvesPluginChunkType newHead = { NULL };
75
_cmsParametricCurvesCollection* entry;
76
_cmsParametricCurvesCollection* Anterior = NULL;
77
_cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
78
79
_cmsAssert(head != NULL);
80
81
// Walk the list copying all nodes
82
for (entry = head->ParametricCurves;
83
entry != NULL;
84
entry = entry ->Next) {
85
86
_cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
87
88
if (newEntry == NULL)
89
return;
90
91
// We want to keep the linked list order, so this is a little bit tricky
92
newEntry -> Next = NULL;
93
if (Anterior)
94
Anterior -> Next = newEntry;
95
96
Anterior = newEntry;
97
98
if (newHead.ParametricCurves == NULL)
99
newHead.ParametricCurves = newEntry;
100
}
101
102
ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
103
}
104
105
// The allocator have to follow the chain
106
void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
107
const struct _cmsContext_struct* src)
108
{
109
_cmsAssert(ctx != NULL);
110
111
if (src != NULL) {
112
113
// Copy all linked list
114
DupPluginCurvesList(ctx, src);
115
}
116
else {
117
static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
118
ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
119
}
120
}
121
122
123
// The linked list head
124
_cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
125
126
// As a way to install new parametric curves
127
cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
128
{
129
_cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
130
cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
131
_cmsParametricCurvesCollection* fl;
132
133
if (Data == NULL) {
134
135
ctx -> ParametricCurves = NULL;
136
return TRUE;
137
}
138
139
fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
140
if (fl == NULL) return FALSE;
141
142
// Copy the parameters
143
fl ->Evaluator = Plugin ->Evaluator;
144
fl ->nFunctions = Plugin ->nFunctions;
145
146
// Make sure no mem overwrites
147
if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
148
fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
149
150
// Copy the data
151
memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number));
152
memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number));
153
154
// Keep linked list
155
fl ->Next = ctx->ParametricCurves;
156
ctx->ParametricCurves = fl;
157
158
// All is ok
159
return TRUE;
160
}
161
162
163
// Search in type list, return position or -1 if not found
164
static
165
int IsInSet(int Type, _cmsParametricCurvesCollection* c)
166
{
167
int i;
168
169
for (i=0; i < (int) c ->nFunctions; i++)
170
if (abs(Type) == c ->FunctionTypes[i]) return i;
171
172
return -1;
173
}
174
175
176
// Search for the collection which contains a specific type
177
static
178
_cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
179
{
180
_cmsParametricCurvesCollection* c;
181
int Position;
182
_cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
183
184
for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
185
186
Position = IsInSet(Type, c);
187
188
if (Position != -1) {
189
if (index != NULL)
190
*index = Position;
191
return c;
192
}
193
}
194
// If none found, revert for defaults
195
for (c = &DefaultCurves; c != NULL; c = c ->Next) {
196
197
Position = IsInSet(Type, c);
198
199
if (Position != -1) {
200
if (index != NULL)
201
*index = Position;
202
return c;
203
}
204
}
205
206
return NULL;
207
}
208
209
// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
210
// no optimization curve is computed. nSegments may also be zero in the inverse case, where only the
211
// optimization curve is given. Both features simultaneously is an error
212
static
213
cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
214
cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
215
const cmsUInt16Number* Values)
216
{
217
cmsToneCurve* p;
218
cmsUInt32Number i;
219
220
// We allow huge tables, which are then restricted for smoothing operations
221
if (nEntries > 65530) {
222
cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
223
return NULL;
224
}
225
226
if (nEntries == 0 && nSegments == 0) {
227
cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
228
return NULL;
229
}
230
231
// Allocate all required pointers, etc.
232
p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
233
if (!p) return NULL;
234
235
// In this case, there are no segments
236
if (nSegments == 0) {
237
p ->Segments = NULL;
238
p ->Evals = NULL;
239
}
240
else {
241
p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
242
if (p ->Segments == NULL) goto Error;
243
244
p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
245
if (p ->Evals == NULL) goto Error;
246
}
247
248
p -> nSegments = nSegments;
249
250
// This 16-bit table contains a limited precision representation of the whole curve and is kept for
251
// increasing xput on certain operations.
252
if (nEntries == 0) {
253
p ->Table16 = NULL;
254
}
255
else {
256
p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
257
if (p ->Table16 == NULL) goto Error;
258
}
259
260
p -> nEntries = nEntries;
261
262
// Initialize members if requested
263
if (Values != NULL && (nEntries > 0)) {
264
265
for (i=0; i < nEntries; i++)
266
p ->Table16[i] = Values[i];
267
}
268
269
// Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
270
// is placed in advance to maximize performance.
271
if (Segments != NULL && (nSegments > 0)) {
272
273
_cmsParametricCurvesCollection *c;
274
275
p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
276
if (p ->SegInterp == NULL) goto Error;
277
278
for (i=0; i < nSegments; i++) {
279
280
// Type 0 is a special marker for table-based curves
281
if (Segments[i].Type == 0)
282
p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
283
284
memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
285
286
if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
287
p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
288
else
289
p ->Segments[i].SampledPoints = NULL;
290
291
292
c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
293
if (c != NULL)
294
p ->Evals[i] = c ->Evaluator;
295
}
296
}
297
298
p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
299
if (p->InterpParams != NULL)
300
return p;
301
302
Error:
303
for (i=0; i < nSegments; i++) {
304
if (p ->Segments && p ->Segments[i].SampledPoints) _cmsFree(ContextID, p ->Segments[i].SampledPoints);
305
if (p ->SegInterp && p ->SegInterp[i]) _cmsFree(ContextID, p ->SegInterp[i]);
306
}
307
if (p -> SegInterp) _cmsFree(ContextID, p -> SegInterp);
308
if (p -> Segments) _cmsFree(ContextID, p -> Segments);
309
if (p -> Evals) _cmsFree(ContextID, p -> Evals);
310
if (p ->Table16) _cmsFree(ContextID, p ->Table16);
311
_cmsFree(ContextID, p);
312
return NULL;
313
}
314
315
316
// Generates a sigmoidal function with desired steepness.
317
cmsINLINE double sigmoid_base(double k, double t)
318
{
319
return (1.0 / (1.0 + exp(-k * t))) - 0.5;
320
}
321
322
cmsINLINE double inverted_sigmoid_base(double k, double t)
323
{
324
return -log((1.0 / (t + 0.5)) - 1.0) / k;
325
}
326
327
cmsINLINE double sigmoid_factory(double k, double t)
328
{
329
double correction = 0.5 / sigmoid_base(k, 1);
330
331
return correction * sigmoid_base(k, 2.0 * t - 1.0) + 0.5;
332
}
333
334
cmsINLINE double inverse_sigmoid_factory(double k, double t)
335
{
336
double correction = 0.5 / sigmoid_base(k, 1);
337
338
return (inverted_sigmoid_base(k, (t - 0.5) / correction) + 1.0) / 2.0;
339
}
340
341
342
// Parametric Fn using floating point
343
static
344
cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
345
{
346
cmsFloat64Number e, Val, disc;
347
348
switch (Type) {
349
350
// X = Y ^ Gamma
351
case 1:
352
if (R < 0) {
353
354
if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
355
Val = R;
356
else
357
Val = 0;
358
}
359
else
360
Val = pow(R, Params[0]);
361
break;
362
363
// Type 1 Reversed: X = Y ^1/gamma
364
case -1:
365
if (R < 0) {
366
367
if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
368
Val = R;
369
else
370
Val = 0;
371
}
372
else
373
{
374
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
375
Val = PLUS_INF;
376
else
377
Val = pow(R, 1 / Params[0]);
378
}
379
break;
380
381
// CIE 122-1966
382
// Y = (aX + b)^Gamma | X >= -b/a
383
// Y = 0 | else
384
case 2:
385
{
386
387
if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
388
{
389
Val = 0;
390
}
391
else
392
{
393
disc = -Params[2] / Params[1];
394
395
if (R >= disc) {
396
397
e = Params[1] * R + Params[2];
398
399
if (e > 0)
400
Val = pow(e, Params[0]);
401
else
402
Val = 0;
403
}
404
else
405
Val = 0;
406
}
407
}
408
break;
409
410
// Type 2 Reversed
411
// X = (Y ^1/g - b) / a
412
case -2:
413
{
414
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
415
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
416
{
417
Val = 0;
418
}
419
else
420
{
421
if (R < 0)
422
Val = 0;
423
else
424
Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
425
426
if (Val < 0)
427
Val = 0;
428
}
429
}
430
break;
431
432
433
// IEC 61966-3
434
// Y = (aX + b)^Gamma + c | X <= -b/a
435
// Y = c | else
436
case 3:
437
{
438
if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
439
{
440
Val = 0;
441
}
442
else
443
{
444
disc = -Params[2] / Params[1];
445
if (disc < 0)
446
disc = 0;
447
448
if (R >= disc) {
449
450
e = Params[1] * R + Params[2];
451
452
if (e > 0)
453
Val = pow(e, Params[0]) + Params[3];
454
else
455
Val = 0;
456
}
457
else
458
Val = Params[3];
459
}
460
}
461
break;
462
463
464
// Type 3 reversed
465
// X=((Y-c)^1/g - b)/a | (Y>=c)
466
// X=-b/a | (Y<c)
467
case -3:
468
{
469
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
470
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
471
{
472
Val = 0;
473
}
474
else
475
{
476
if (R >= Params[3]) {
477
478
e = R - Params[3];
479
480
if (e > 0)
481
Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
482
else
483
Val = 0;
484
}
485
else {
486
Val = -Params[2] / Params[1];
487
}
488
}
489
}
490
break;
491
492
493
// IEC 61966-2.1 (sRGB)
494
// Y = (aX + b)^Gamma | X >= d
495
// Y = cX | X < d
496
case 4:
497
if (R >= Params[4]) {
498
499
e = Params[1]*R + Params[2];
500
501
if (e > 0)
502
Val = pow(e, Params[0]);
503
else
504
Val = 0;
505
}
506
else
507
Val = R * Params[3];
508
break;
509
510
// Type 4 reversed
511
// X=((Y^1/g-b)/a) | Y >= (ad+b)^g
512
// X=Y/c | Y< (ad+b)^g
513
case -4:
514
{
515
516
e = Params[1] * Params[4] + Params[2];
517
if (e < 0)
518
disc = 0;
519
else
520
disc = pow(e, Params[0]);
521
522
if (R >= disc) {
523
524
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
525
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
526
527
Val = 0;
528
529
else
530
Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
531
}
532
else {
533
534
if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
535
Val = 0;
536
else
537
Val = R / Params[3];
538
}
539
540
}
541
break;
542
543
544
// Y = (aX + b)^Gamma + e | X >= d
545
// Y = cX + f | X < d
546
case 5:
547
if (R >= Params[4]) {
548
549
e = Params[1]*R + Params[2];
550
551
if (e > 0)
552
Val = pow(e, Params[0]) + Params[5];
553
else
554
Val = Params[5];
555
}
556
else
557
Val = R*Params[3] + Params[6];
558
break;
559
560
561
// Reversed type 5
562
// X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f
563
// X=(Y-f)/c | else
564
case -5:
565
{
566
disc = Params[3] * Params[4] + Params[6];
567
if (R >= disc) {
568
569
e = R - Params[5];
570
if (e < 0)
571
Val = 0;
572
else
573
{
574
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
575
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
576
577
Val = 0;
578
else
579
Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
580
}
581
}
582
else {
583
if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
584
Val = 0;
585
else
586
Val = (R - Params[6]) / Params[3];
587
}
588
589
}
590
break;
591
592
593
// Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
594
// Type 6 is basically identical to type 5 without d
595
596
// Y = (a * X + b) ^ Gamma + c
597
case 6:
598
e = Params[1]*R + Params[2];
599
600
// On gamma 1.0, don't clamp
601
if (Params[0] == 1.0) {
602
Val = e + Params[3];
603
}
604
else {
605
if (e < 0)
606
Val = Params[3];
607
else
608
Val = pow(e, Params[0]) + Params[3];
609
}
610
break;
611
612
// ((Y - c) ^1/Gamma - b) / a
613
case -6:
614
{
615
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
616
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
617
{
618
Val = 0;
619
}
620
else
621
{
622
e = R - Params[3];
623
if (e < 0)
624
Val = 0;
625
else
626
Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
627
}
628
}
629
break;
630
631
632
// Y = a * log (b * X^Gamma + c) + d
633
case 7:
634
635
e = Params[2] * pow(R, Params[0]) + Params[3];
636
if (e <= 0)
637
Val = Params[4];
638
else
639
Val = Params[1]*log10(e) + Params[4];
640
break;
641
642
// (Y - d) / a = log(b * X ^Gamma + c)
643
// pow(10, (Y-d) / a) = b * X ^Gamma + c
644
// pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
645
case -7:
646
{
647
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
648
fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
649
fabs(Params[2]) < MATRIX_DET_TOLERANCE)
650
{
651
Val = 0;
652
}
653
else
654
{
655
Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
656
}
657
}
658
break;
659
660
661
//Y = a * b^(c*X+d) + e
662
case 8:
663
Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
664
break;
665
666
667
// Y = (log((y-e) / a) / log(b) - d ) / c
668
// a=0, b=1, c=2, d=3, e=4,
669
case -8:
670
671
disc = R - Params[4];
672
if (disc < 0) Val = 0;
673
else
674
{
675
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
676
fabs(Params[2]) < MATRIX_DET_TOLERANCE)
677
{
678
Val = 0;
679
}
680
else
681
{
682
Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
683
}
684
}
685
break;
686
687
688
// S-Shaped: (1 - (1-x)^1/g)^1/g
689
case 108:
690
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
691
Val = 0;
692
else
693
Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
694
break;
695
696
// y = (1 - (1-x)^1/g)^1/g
697
// y^g = (1 - (1-x)^1/g)
698
// 1 - y^g = (1-x)^1/g
699
// (1 - y^g)^g = 1 - x
700
// 1 - (1 - y^g)^g
701
case -108:
702
Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
703
break;
704
705
// Sigmoidals
706
case 109:
707
Val = sigmoid_factory(Params[0], R);
708
break;
709
710
case -109:
711
Val = inverse_sigmoid_factory(Params[0], R);
712
break;
713
714
default:
715
// Unsupported parametric curve. Should never reach here
716
return 0;
717
}
718
719
return Val;
720
}
721
722
// Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
723
// If fn type is 0, perform an interpolation on the table
724
static
725
cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
726
{
727
int i;
728
cmsFloat32Number Out32;
729
cmsFloat64Number Out;
730
731
for (i = (int) g->nSegments - 1; i >= 0; --i) {
732
733
// Check for domain
734
if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {
735
736
// Type == 0 means segment is sampled
737
if (g->Segments[i].Type == 0) {
738
739
cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);
740
741
// Setup the table (TODO: clean that)
742
g->SegInterp[i]->Table = g->Segments[i].SampledPoints;
743
744
g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]);
745
Out = (cmsFloat64Number) Out32;
746
747
}
748
else {
749
Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R);
750
}
751
752
if (isinf(Out))
753
return PLUS_INF;
754
else
755
{
756
if (isinf(-Out))
757
return MINUS_INF;
758
}
759
760
return Out;
761
}
762
}
763
764
return MINUS_INF;
765
}
766
767
// Access to estimated low-res table
768
cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
769
{
770
_cmsAssert(t != NULL);
771
return t ->nEntries;
772
}
773
774
const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
775
{
776
_cmsAssert(t != NULL);
777
return t ->Table16;
778
}
779
780
781
// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
782
// floating point description empty.
783
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
784
{
785
return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
786
}
787
788
static
789
cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
790
{
791
if (fabs(Gamma - 1.0) < 0.001) return 2;
792
return 4096;
793
}
794
795
796
// Create a segmented gamma, fill the table
797
cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
798
cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
799
{
800
cmsUInt32Number i;
801
cmsFloat64Number R, Val;
802
cmsToneCurve* g;
803
cmsUInt32Number nGridPoints = 4096;
804
805
_cmsAssert(Segments != NULL);
806
807
// Optimizatin for identity curves.
808
if (nSegments == 1 && Segments[0].Type == 1) {
809
810
nGridPoints = EntriesByGamma(Segments[0].Params[0]);
811
}
812
813
g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
814
if (g == NULL) return NULL;
815
816
// Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
817
// for performance reasons. This table would normally not be used except on 8/16 bits transforms.
818
for (i = 0; i < nGridPoints; i++) {
819
820
R = (cmsFloat64Number) i / (nGridPoints-1);
821
822
Val = EvalSegmentedFn(g, R);
823
824
// Round and saturate
825
g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
826
}
827
828
return g;
829
}
830
831
// Use a segmented curve to store the floating point table
832
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
833
{
834
cmsCurveSegment Seg[3];
835
836
// Do some housekeeping
837
if (nEntries == 0 || values == NULL)
838
return NULL;
839
840
// A segmented tone curve should have function segments in the first and last positions
841
// Initialize segmented curve part up to 0 to constant value = samples[0]
842
Seg[0].x0 = MINUS_INF;
843
Seg[0].x1 = 0;
844
Seg[0].Type = 6;
845
846
Seg[0].Params[0] = 1;
847
Seg[0].Params[1] = 0;
848
Seg[0].Params[2] = 0;
849
Seg[0].Params[3] = values[0];
850
Seg[0].Params[4] = 0;
851
852
// From zero to 1
853
Seg[1].x0 = 0;
854
Seg[1].x1 = 1.0;
855
Seg[1].Type = 0;
856
857
Seg[1].nGridPoints = nEntries;
858
Seg[1].SampledPoints = (cmsFloat32Number*) values;
859
860
// Final segment is constant = lastsample
861
Seg[2].x0 = 1.0;
862
Seg[2].x1 = PLUS_INF;
863
Seg[2].Type = 6;
864
865
Seg[2].Params[0] = 1;
866
Seg[2].Params[1] = 0;
867
Seg[2].Params[2] = 0;
868
Seg[2].Params[3] = values[nEntries-1];
869
Seg[2].Params[4] = 0;
870
871
872
return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
873
}
874
875
// Parametric curves
876
//
877
// Parameters goes as: Curve, a, b, c, d, e, f
878
// Type is the ICC type +1
879
// if type is negative, then the curve is analytically inverted
880
cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
881
{
882
cmsCurveSegment Seg0;
883
int Pos = 0;
884
cmsUInt32Number size;
885
_cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
886
887
_cmsAssert(Params != NULL);
888
889
if (c == NULL) {
890
cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
891
return NULL;
892
}
893
894
memset(&Seg0, 0, sizeof(Seg0));
895
896
Seg0.x0 = MINUS_INF;
897
Seg0.x1 = PLUS_INF;
898
Seg0.Type = Type;
899
900
size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
901
memmove(Seg0.Params, Params, size);
902
903
return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
904
}
905
906
907
908
// Build a gamma table based on gamma constant
909
cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
910
{
911
return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
912
}
913
914
915
// Free all memory taken by the gamma curve
916
void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
917
{
918
cmsContext ContextID;
919
920
if (Curve == NULL) return;
921
922
ContextID = Curve ->InterpParams->ContextID;
923
924
_cmsFreeInterpParams(Curve ->InterpParams);
925
926
if (Curve -> Table16)
927
_cmsFree(ContextID, Curve ->Table16);
928
929
if (Curve ->Segments) {
930
931
cmsUInt32Number i;
932
933
for (i=0; i < Curve ->nSegments; i++) {
934
935
if (Curve ->Segments[i].SampledPoints) {
936
_cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
937
}
938
939
if (Curve ->SegInterp[i] != 0)
940
_cmsFreeInterpParams(Curve->SegInterp[i]);
941
}
942
943
_cmsFree(ContextID, Curve ->Segments);
944
_cmsFree(ContextID, Curve ->SegInterp);
945
}
946
947
if (Curve -> Evals)
948
_cmsFree(ContextID, Curve -> Evals);
949
950
_cmsFree(ContextID, Curve);
951
}
952
953
// Utility function, free 3 gamma tables
954
void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
955
{
956
957
_cmsAssert(Curve != NULL);
958
959
if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
960
if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
961
if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
962
963
Curve[0] = Curve[1] = Curve[2] = NULL;
964
}
965
966
967
// Duplicate a gamma table
968
cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
969
{
970
if (In == NULL) return NULL;
971
972
return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
973
}
974
975
// Joins two curves for X and Y. Curves should be monotonic.
976
// We want to get
977
//
978
// y = Y^-1(X(t))
979
//
980
cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
981
const cmsToneCurve* X,
982
const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
983
{
984
cmsToneCurve* out = NULL;
985
cmsToneCurve* Yreversed = NULL;
986
cmsFloat32Number t, x;
987
cmsFloat32Number* Res = NULL;
988
cmsUInt32Number i;
989
990
991
_cmsAssert(X != NULL);
992
_cmsAssert(Y != NULL);
993
994
Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
995
if (Yreversed == NULL) goto Error;
996
997
Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
998
if (Res == NULL) goto Error;
999
1000
//Iterate
1001
for (i=0; i < nResultingPoints; i++) {
1002
1003
t = (cmsFloat32Number) i / (cmsFloat32Number)(nResultingPoints-1);
1004
x = cmsEvalToneCurveFloat(X, t);
1005
Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
1006
}
1007
1008
// Allocate space for output
1009
out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
1010
1011
Error:
1012
1013
if (Res != NULL) _cmsFree(ContextID, Res);
1014
if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
1015
1016
return out;
1017
}
1018
1019
1020
1021
// Get the surrounding nodes. This is tricky on non-monotonic tables
1022
static
1023
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
1024
{
1025
int i;
1026
int y0, y1;
1027
1028
// A 1 point table is not allowed
1029
if (p -> Domain[0] < 1) return -1;
1030
1031
// Let's see if ascending or descending.
1032
if (LutTable[0] < LutTable[p ->Domain[0]]) {
1033
1034
// Table is overall ascending
1035
for (i = (int) p->Domain[0] - 1; i >= 0; --i) {
1036
1037
y0 = LutTable[i];
1038
y1 = LutTable[i+1];
1039
1040
if (y0 <= y1) { // Increasing
1041
if (In >= y0 && In <= y1) return i;
1042
}
1043
else
1044
if (y1 < y0) { // Decreasing
1045
if (In >= y1 && In <= y0) return i;
1046
}
1047
}
1048
}
1049
else {
1050
// Table is overall descending
1051
for (i=0; i < (int) p -> Domain[0]; i++) {
1052
1053
y0 = LutTable[i];
1054
y1 = LutTable[i+1];
1055
1056
if (y0 <= y1) { // Increasing
1057
if (In >= y0 && In <= y1) return i;
1058
}
1059
else
1060
if (y1 < y0) { // Decreasing
1061
if (In >= y1 && In <= y0) return i;
1062
}
1063
}
1064
}
1065
1066
return -1;
1067
}
1068
1069
// Reverse a gamma table
1070
cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
1071
{
1072
cmsToneCurve *out;
1073
cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
1074
int i, j;
1075
int Ascending;
1076
1077
_cmsAssert(InCurve != NULL);
1078
1079
// Try to reverse it analytically whatever possible
1080
1081
if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
1082
/* InCurve -> Segments[0].Type <= 5 */
1083
GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
1084
1085
return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
1086
-(InCurve -> Segments[0].Type),
1087
InCurve -> Segments[0].Params);
1088
}
1089
1090
// Nope, reverse the table.
1091
out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
1092
if (out == NULL)
1093
return NULL;
1094
1095
// We want to know if this is an ascending or descending table
1096
Ascending = !cmsIsToneCurveDescending(InCurve);
1097
1098
// Iterate across Y axis
1099
for (i=0; i < (int) nResultSamples; i++) {
1100
1101
y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
1102
1103
// Find interval in which y is within.
1104
j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
1105
if (j >= 0) {
1106
1107
1108
// Get limits of interval
1109
x1 = InCurve ->Table16[j];
1110
x2 = InCurve ->Table16[j+1];
1111
1112
y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
1113
y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
1114
1115
// If collapsed, then use any
1116
if (x1 == x2) {
1117
1118
out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
1119
continue;
1120
1121
} else {
1122
1123
// Interpolate
1124
a = (y2 - y1) / (x2 - x1);
1125
b = y2 - a * x2;
1126
}
1127
}
1128
1129
out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
1130
}
1131
1132
1133
return out;
1134
}
1135
1136
// Reverse a gamma table
1137
cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
1138
{
1139
_cmsAssert(InGamma != NULL);
1140
1141
return cmsReverseToneCurveEx(4096, InGamma);
1142
}
1143
1144
// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
1145
// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
1146
//
1147
// Smoothing and interpolation with second differences.
1148
//
1149
// Input: weights (w), data (y): vector from 1 to m.
1150
// Input: smoothing parameter (lambda), length (m).
1151
// Output: smoothed vector (z): vector from 1 to m.
1152
1153
static
1154
cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
1155
cmsFloat32Number z[], cmsFloat32Number lambda, int m)
1156
{
1157
int i, i1, i2;
1158
cmsFloat32Number *c, *d, *e;
1159
cmsBool st;
1160
1161
1162
c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1163
d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1164
e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1165
1166
if (c != NULL && d != NULL && e != NULL) {
1167
1168
1169
d[1] = w[1] + lambda;
1170
c[1] = -2 * lambda / d[1];
1171
e[1] = lambda /d[1];
1172
z[1] = w[1] * y[1];
1173
d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1];
1174
c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
1175
e[2] = lambda / d[2];
1176
z[2] = w[2] * y[2] - c[1] * z[1];
1177
1178
for (i = 3; i < m - 1; i++) {
1179
i1 = i - 1; i2 = i - 2;
1180
d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1181
c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
1182
e[i] = lambda / d[i];
1183
z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
1184
}
1185
1186
i1 = m - 2; i2 = m - 3;
1187
1188
d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1189
c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
1190
z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
1191
i1 = m - 1; i2 = m - 2;
1192
1193
d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1194
z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
1195
z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
1196
1197
for (i = m - 2; 1<= i; i--)
1198
z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
1199
1200
st = TRUE;
1201
}
1202
else st = FALSE;
1203
1204
if (c != NULL) _cmsFree(ContextID, c);
1205
if (d != NULL) _cmsFree(ContextID, d);
1206
if (e != NULL) _cmsFree(ContextID, e);
1207
1208
return st;
1209
}
1210
1211
// Smooths a curve sampled at regular intervals.
1212
cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
1213
{
1214
cmsBool SuccessStatus = TRUE;
1215
cmsFloat32Number *w, *y, *z;
1216
cmsUInt32Number i, nItems, Zeros, Poles;
1217
cmsBool notCheck = FALSE;
1218
1219
if (Tab != NULL && Tab->InterpParams != NULL)
1220
{
1221
cmsContext ContextID = Tab->InterpParams->ContextID;
1222
1223
if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing
1224
{
1225
nItems = Tab->nEntries;
1226
if (nItems < MAX_NODES_IN_CURVE)
1227
{
1228
// Allocate one more item than needed
1229
w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1230
y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1231
z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1232
1233
if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
1234
{
1235
memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1236
memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1237
memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1238
1239
for (i = 0; i < nItems; i++)
1240
{
1241
y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
1242
w[i + 1] = 1.0;
1243
}
1244
1245
if (lambda < 0)
1246
{
1247
notCheck = TRUE;
1248
lambda = -lambda;
1249
}
1250
1251
if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
1252
{
1253
// Do some reality - checking...
1254
1255
Zeros = Poles = 0;
1256
for (i = nItems; i > 1; --i)
1257
{
1258
if (z[i] == 0.) Zeros++;
1259
if (z[i] >= 65535.) Poles++;
1260
if (z[i] < z[i - 1])
1261
{
1262
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
1263
SuccessStatus = notCheck;
1264
break;
1265
}
1266
}
1267
1268
if (SuccessStatus && Zeros > (nItems / 3))
1269
{
1270
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
1271
SuccessStatus = notCheck;
1272
}
1273
1274
if (SuccessStatus && Poles > (nItems / 3))
1275
{
1276
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
1277
SuccessStatus = notCheck;
1278
}
1279
1280
if (SuccessStatus) // Seems ok
1281
{
1282
for (i = 0; i < nItems; i++)
1283
{
1284
// Clamp to cmsUInt16Number
1285
Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
1286
}
1287
}
1288
}
1289
else // Could not smooth
1290
{
1291
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
1292
SuccessStatus = FALSE;
1293
}
1294
}
1295
else // One or more buffers could not be allocated
1296
{
1297
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
1298
SuccessStatus = FALSE;
1299
}
1300
1301
if (z != NULL)
1302
_cmsFree(ContextID, z);
1303
1304
if (y != NULL)
1305
_cmsFree(ContextID, y);
1306
1307
if (w != NULL)
1308
_cmsFree(ContextID, w);
1309
}
1310
else // too many items in the table
1311
{
1312
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
1313
SuccessStatus = FALSE;
1314
}
1315
}
1316
}
1317
else // Tab parameter or Tab->InterpParams is NULL
1318
{
1319
// Can't signal an error here since the ContextID is not known at this point
1320
SuccessStatus = FALSE;
1321
}
1322
1323
return SuccessStatus;
1324
}
1325
1326
// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
1327
// in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases.
1328
cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
1329
{
1330
int i;
1331
int diff;
1332
1333
_cmsAssert(Curve != NULL);
1334
1335
for (i=0; i < (int) Curve ->nEntries; i++) {
1336
1337
diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
1338
if (diff > 0x0f)
1339
return FALSE;
1340
}
1341
1342
return TRUE;
1343
}
1344
1345
// Same, but for monotonicity
1346
cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
1347
{
1348
cmsUInt32Number n;
1349
int i, last;
1350
cmsBool lDescending;
1351
1352
_cmsAssert(t != NULL);
1353
1354
// Degenerated curves are monotonic? Ok, let's pass them
1355
n = t ->nEntries;
1356
if (n < 2) return TRUE;
1357
1358
// Curve direction
1359
lDescending = cmsIsToneCurveDescending(t);
1360
1361
if (lDescending) {
1362
1363
last = t ->Table16[0];
1364
1365
for (i = 1; i < (int) n; i++) {
1366
1367
if (t ->Table16[i] - last > 2) // We allow some ripple
1368
return FALSE;
1369
else
1370
last = t ->Table16[i];
1371
1372
}
1373
}
1374
else {
1375
1376
last = t ->Table16[n-1];
1377
1378
for (i = (int) n - 2; i >= 0; --i) {
1379
1380
if (t ->Table16[i] - last > 2)
1381
return FALSE;
1382
else
1383
last = t ->Table16[i];
1384
1385
}
1386
}
1387
1388
return TRUE;
1389
}
1390
1391
// Same, but for descending tables
1392
cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
1393
{
1394
_cmsAssert(t != NULL);
1395
1396
return t ->Table16[0] > t ->Table16[t ->nEntries-1];
1397
}
1398
1399
1400
// Another info fn: is out gamma table multisegment?
1401
cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
1402
{
1403
_cmsAssert(t != NULL);
1404
1405
return t -> nSegments > 1;
1406
}
1407
1408
cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
1409
{
1410
_cmsAssert(t != NULL);
1411
1412
if (t -> nSegments != 1) return 0;
1413
return t ->Segments[0].Type;
1414
}
1415
1416
// We need accuracy this time
1417
cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
1418
{
1419
_cmsAssert(Curve != NULL);
1420
1421
// Check for 16 bits table. If so, this is a limited-precision tone curve
1422
if (Curve ->nSegments == 0) {
1423
1424
cmsUInt16Number In, Out;
1425
1426
In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
1427
Out = cmsEvalToneCurve16(Curve, In);
1428
1429
return (cmsFloat32Number) (Out / 65535.0);
1430
}
1431
1432
return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
1433
}
1434
1435
// We need xput over here
1436
cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
1437
{
1438
cmsUInt16Number out;
1439
1440
_cmsAssert(Curve != NULL);
1441
1442
Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
1443
return out;
1444
}
1445
1446
1447
// Least squares fitting.
1448
// A mathematical procedure for finding the best-fitting curve to a given set of points by
1449
// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
1450
// The sum of the squares of the offsets is used instead of the offset absolute values because
1451
// this allows the residuals to be treated as a continuous differentiable quantity.
1452
//
1453
// y = f(x) = x ^ g
1454
//
1455
// R = (yi - (xi^g))
1456
// R2 = (yi - (xi^g))2
1457
// SUM R2 = SUM (yi - (xi^g))2
1458
//
1459
// dR2/dg = -2 SUM x^g log(x)(y - x^g)
1460
// solving for dR2/dg = 0
1461
//
1462
// g = 1/n * SUM(log(y) / log(x))
1463
1464
cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
1465
{
1466
cmsFloat64Number gamma, sum, sum2;
1467
cmsFloat64Number n, x, y, Std;
1468
cmsUInt32Number i;
1469
1470
_cmsAssert(t != NULL);
1471
1472
sum = sum2 = n = 0;
1473
1474
// Excluding endpoints
1475
for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
1476
1477
x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
1478
y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
1479
1480
// Avoid 7% on lower part to prevent
1481
// artifacts due to linear ramps
1482
1483
if (y > 0. && y < 1. && x > 0.07) {
1484
1485
gamma = log(y) / log(x);
1486
sum += gamma;
1487
sum2 += gamma * gamma;
1488
n++;
1489
}
1490
}
1491
1492
// We need enough valid samples
1493
if (n <= 1) return -1.0;
1494
1495
// Take a look on SD to see if gamma isn't exponential at all
1496
Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
1497
1498
if (Std > Precision)
1499
return -1.0;
1500
1501
return (sum / n); // The mean
1502
}
1503
1504
// Retrieve segments on tone curves
1505
1506
const cmsCurveSegment* CMSEXPORT cmsGetToneCurveSegment(cmsInt32Number n, const cmsToneCurve* t)
1507
{
1508
_cmsAssert(t != NULL);
1509
1510
if (n < 0 || n >= (cmsInt32Number) t->nSegments) return NULL;
1511
return t->Segments + n;
1512
}
1513
1514