Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/lcms2/src/cmsopt.c
4391 views
1
//---------------------------------------------------------------------------------
2
//
3
// Little Color Management System
4
// Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
27
#include "lcms2_internal.h"
28
29
30
//----------------------------------------------------------------------------------
31
32
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33
typedef struct {
34
35
cmsContext ContextID;
36
37
const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39
cmsUInt16Number rx[256], ry[256], rz[256];
40
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43
} Prelin8Data;
44
45
46
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47
typedef struct {
48
49
cmsContext ContextID;
50
51
// Number of channels
52
cmsUInt32Number nInputs;
53
cmsUInt32Number nOutputs;
54
55
_cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56
cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59
const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66
} Prelin16Data;
67
68
69
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75
typedef struct {
76
77
cmsContext ContextID;
78
79
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80
cmsS1Fixed14Number Shaper1G[256];
81
cmsS1Fixed14Number Shaper1B[256];
82
83
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84
cmsS1Fixed14Number Off[3];
85
86
cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87
cmsUInt16Number Shaper2G[16385];
88
cmsUInt16Number Shaper2B[16385];
89
90
} MatShaper8Data;
91
92
// Curves, optimization is shared between 8 and 16 bits
93
typedef struct {
94
95
cmsContext ContextID;
96
97
cmsUInt32Number nCurves; // Number of curves
98
cmsUInt32Number nElements; // Elements in curves
99
cmsUInt16Number** Curves; // Points to a dynamically allocated array
100
101
} Curves16Data;
102
103
104
// Simple optimizations ----------------------------------------------------------------------------------------------------------
105
106
107
// Remove an element in linked chain
108
static
109
void _RemoveElement(cmsStage** head)
110
{
111
cmsStage* mpe = *head;
112
cmsStage* next = mpe ->Next;
113
*head = next;
114
cmsStageFree(mpe);
115
}
116
117
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118
static
119
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
120
{
121
cmsStage** pt = &Lut ->Elements;
122
cmsBool AnyOpt = FALSE;
123
124
while (*pt != NULL) {
125
126
if ((*pt) ->Implements == UnaryOp) {
127
_RemoveElement(pt);
128
AnyOpt = TRUE;
129
}
130
else
131
pt = &((*pt) -> Next);
132
}
133
134
return AnyOpt;
135
}
136
137
// Same, but only if two adjacent elements are found
138
static
139
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
140
{
141
cmsStage** pt1;
142
cmsStage** pt2;
143
cmsBool AnyOpt = FALSE;
144
145
pt1 = &Lut ->Elements;
146
if (*pt1 == NULL) return AnyOpt;
147
148
while (*pt1 != NULL) {
149
150
pt2 = &((*pt1) -> Next);
151
if (*pt2 == NULL) return AnyOpt;
152
153
if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154
_RemoveElement(pt2);
155
_RemoveElement(pt1);
156
AnyOpt = TRUE;
157
}
158
else
159
pt1 = &((*pt1) -> Next);
160
}
161
162
return AnyOpt;
163
}
164
165
166
static
167
cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
168
{
169
return fabs(b - a) < 0.00001f;
170
}
171
172
static
173
cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
174
{
175
cmsMAT3 Identity;
176
int i, j;
177
178
_cmsMAT3identity(&Identity);
179
180
for (i = 0; i < 3; i++)
181
for (j = 0; j < 3; j++)
182
if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
183
184
return TRUE;
185
}
186
187
// if two adjacent matrices are found, multiply them.
188
static
189
cmsBool _MultiplyMatrix(cmsPipeline* Lut)
190
{
191
cmsStage** pt1;
192
cmsStage** pt2;
193
cmsStage* chain;
194
cmsBool AnyOpt = FALSE;
195
196
pt1 = &Lut->Elements;
197
if (*pt1 == NULL) return AnyOpt;
198
199
while (*pt1 != NULL) {
200
201
pt2 = &((*pt1)->Next);
202
if (*pt2 == NULL) return AnyOpt;
203
204
if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
205
206
// Get both matrices
207
_cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
208
_cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
209
cmsMAT3 res;
210
211
// Input offset and output offset should be zero to use this optimization
212
if (m1->Offset != NULL || m2 ->Offset != NULL ||
213
cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
214
cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
215
return FALSE;
216
217
// Multiply both matrices to get the result
218
_cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
219
220
// Get the next in chain after the matrices
221
chain = (*pt2)->Next;
222
223
// Remove both matrices
224
_RemoveElement(pt2);
225
_RemoveElement(pt1);
226
227
// Now what if the result is a plain identity?
228
if (!isFloatMatrixIdentity(&res)) {
229
230
// We can not get rid of full matrix
231
cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
232
if (Multmat == NULL) return FALSE; // Should never happen
233
234
// Recover the chain
235
Multmat->Next = chain;
236
*pt1 = Multmat;
237
}
238
239
AnyOpt = TRUE;
240
}
241
else
242
pt1 = &((*pt1)->Next);
243
}
244
245
return AnyOpt;
246
}
247
248
249
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
250
// by a v4 to v2 and vice-versa. The elements are then discarded.
251
static
252
cmsBool PreOptimize(cmsPipeline* Lut)
253
{
254
cmsBool AnyOpt = FALSE, Opt;
255
256
do {
257
258
Opt = FALSE;
259
260
// Remove all identities
261
Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
262
263
// Remove XYZ2Lab followed by Lab2XYZ
264
Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
265
266
// Remove Lab2XYZ followed by XYZ2Lab
267
Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
268
269
// Remove V4 to V2 followed by V2 to V4
270
Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
271
272
// Remove V2 to V4 followed by V4 to V2
273
Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
274
275
// Remove float pcs Lab conversions
276
Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
277
278
// Remove float pcs Lab conversions
279
Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
280
281
// Simplify matrix.
282
Opt |= _MultiplyMatrix(Lut);
283
284
if (Opt) AnyOpt = TRUE;
285
286
} while (Opt);
287
288
return AnyOpt;
289
}
290
291
static
292
void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
293
CMSREGISTER cmsUInt16Number Output[],
294
CMSREGISTER const struct _cms_interp_struc* p)
295
{
296
Output[0] = Input[0];
297
298
cmsUNUSED_PARAMETER(p);
299
}
300
301
static
302
void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
303
CMSREGISTER cmsUInt16Number Output[],
304
CMSREGISTER const void* D)
305
{
306
Prelin16Data* p16 = (Prelin16Data*) D;
307
cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
308
cmsUInt16Number StageDEF[cmsMAXCHANNELS];
309
cmsUInt32Number i;
310
311
for (i=0; i < p16 ->nInputs; i++) {
312
313
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
314
}
315
316
p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
317
318
for (i=0; i < p16 ->nOutputs; i++) {
319
320
p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
321
}
322
}
323
324
325
static
326
void PrelinOpt16free(cmsContext ContextID, void* ptr)
327
{
328
Prelin16Data* p16 = (Prelin16Data*) ptr;
329
330
_cmsFree(ContextID, p16 ->EvalCurveOut16);
331
_cmsFree(ContextID, p16 ->ParamsCurveOut16);
332
333
_cmsFree(ContextID, p16);
334
}
335
336
static
337
void* Prelin16dup(cmsContext ContextID, const void* ptr)
338
{
339
Prelin16Data* p16 = (Prelin16Data*) ptr;
340
Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
341
342
if (Duped == NULL) return NULL;
343
344
Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
345
Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
346
347
return Duped;
348
}
349
350
351
static
352
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
353
const cmsInterpParams* ColorMap,
354
cmsUInt32Number nInputs, cmsToneCurve** In,
355
cmsUInt32Number nOutputs, cmsToneCurve** Out )
356
{
357
cmsUInt32Number i;
358
Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
359
if (p16 == NULL) return NULL;
360
361
p16 ->nInputs = nInputs;
362
p16 ->nOutputs = nOutputs;
363
364
365
for (i=0; i < nInputs; i++) {
366
367
if (In == NULL) {
368
p16 -> ParamsCurveIn16[i] = NULL;
369
p16 -> EvalCurveIn16[i] = Eval16nop1D;
370
371
}
372
else {
373
p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
374
p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
375
}
376
}
377
378
p16 ->CLUTparams = ColorMap;
379
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
380
381
382
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
383
if (p16->EvalCurveOut16 == NULL)
384
{
385
_cmsFree(ContextID, p16);
386
return NULL;
387
}
388
389
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
390
if (p16->ParamsCurveOut16 == NULL)
391
{
392
393
_cmsFree(ContextID, p16->EvalCurveOut16);
394
_cmsFree(ContextID, p16);
395
return NULL;
396
}
397
398
for (i=0; i < nOutputs; i++) {
399
400
if (Out == NULL) {
401
p16 ->ParamsCurveOut16[i] = NULL;
402
p16 -> EvalCurveOut16[i] = Eval16nop1D;
403
}
404
else {
405
406
p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
407
p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
408
}
409
}
410
411
return p16;
412
}
413
414
415
416
// Resampling ---------------------------------------------------------------------------------
417
418
#define PRELINEARIZATION_POINTS 4096
419
420
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
421
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
422
static
423
cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
424
CMSREGISTER cmsUInt16Number Out[],
425
CMSREGISTER void* Cargo)
426
{
427
cmsPipeline* Lut = (cmsPipeline*) Cargo;
428
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
429
cmsUInt32Number i;
430
431
_cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
432
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
433
434
// From 16 bit to floating point
435
for (i=0; i < Lut ->InputChannels; i++)
436
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
437
438
// Evaluate in floating point
439
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
440
441
// Back to 16 bits representation
442
for (i=0; i < Lut ->OutputChannels; i++)
443
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
444
445
// Always succeed
446
return TRUE;
447
}
448
449
// Try to see if the curves of a given MPE are linear
450
static
451
cmsBool AllCurvesAreLinear(cmsStage* mpe)
452
{
453
cmsToneCurve** Curves;
454
cmsUInt32Number i, n;
455
456
Curves = _cmsStageGetPtrToCurveSet(mpe);
457
if (Curves == NULL) return FALSE;
458
459
n = cmsStageOutputChannels(mpe);
460
461
for (i=0; i < n; i++) {
462
if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
463
}
464
465
return TRUE;
466
}
467
468
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
469
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
470
static
471
cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
472
cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
473
{
474
_cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
475
cmsInterpParams* p16 = Grid ->Params;
476
cmsFloat64Number px, py, pz, pw;
477
int x0, y0, z0, w0;
478
int i, index;
479
480
if (CLUT -> Type != cmsSigCLutElemType) {
481
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
482
return FALSE;
483
}
484
485
if (nChannelsIn == 4) {
486
487
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
488
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
489
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
490
pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
491
492
x0 = (int) floor(px);
493
y0 = (int) floor(py);
494
z0 = (int) floor(pz);
495
w0 = (int) floor(pw);
496
497
if (((px - x0) != 0) ||
498
((py - y0) != 0) ||
499
((pz - z0) != 0) ||
500
((pw - w0) != 0)) return FALSE; // Not on exact node
501
502
index = (int) p16 -> opta[3] * x0 +
503
(int) p16 -> opta[2] * y0 +
504
(int) p16 -> opta[1] * z0 +
505
(int) p16 -> opta[0] * w0;
506
}
507
else
508
if (nChannelsIn == 3) {
509
510
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
511
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
512
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
513
514
x0 = (int) floor(px);
515
y0 = (int) floor(py);
516
z0 = (int) floor(pz);
517
518
if (((px - x0) != 0) ||
519
((py - y0) != 0) ||
520
((pz - z0) != 0)) return FALSE; // Not on exact node
521
522
index = (int) p16 -> opta[2] * x0 +
523
(int) p16 -> opta[1] * y0 +
524
(int) p16 -> opta[0] * z0;
525
}
526
else
527
if (nChannelsIn == 1) {
528
529
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
530
531
x0 = (int) floor(px);
532
533
if (((px - x0) != 0)) return FALSE; // Not on exact node
534
535
index = (int) p16 -> opta[0] * x0;
536
}
537
else {
538
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
539
return FALSE;
540
}
541
542
for (i = 0; i < (int) nChannelsOut; i++)
543
Grid->Tab.T[index + i] = Value[i];
544
545
return TRUE;
546
}
547
548
// Auxiliary, to see if two values are equal or very different
549
static
550
cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
551
{
552
cmsUInt32Number i;
553
554
for (i=0; i < n; i++) {
555
556
if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
557
if (White1[i] != White2[i]) return FALSE;
558
}
559
return TRUE;
560
}
561
562
563
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
564
static
565
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
566
{
567
cmsUInt16Number *WhitePointIn, *WhitePointOut;
568
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
569
cmsUInt32Number i, nOuts, nIns;
570
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
571
572
if (!_cmsEndPointsBySpace(EntryColorSpace,
573
&WhitePointIn, NULL, &nIns)) return FALSE;
574
575
if (!_cmsEndPointsBySpace(ExitColorSpace,
576
&WhitePointOut, NULL, &nOuts)) return FALSE;
577
578
// It needs to be fixed?
579
if (Lut ->InputChannels != nIns) return FALSE;
580
if (Lut ->OutputChannels != nOuts) return FALSE;
581
582
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
583
584
if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
585
586
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
587
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
588
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
589
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
590
if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
591
return FALSE;
592
593
// We need to interpolate white points of both, pre and post curves
594
if (PreLin) {
595
596
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
597
598
for (i=0; i < nIns; i++) {
599
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
600
}
601
}
602
else {
603
for (i=0; i < nIns; i++)
604
WhiteIn[i] = WhitePointIn[i];
605
}
606
607
// If any post-linearization, we need to find how is represented white before the curve, do
608
// a reverse interpolation in this case.
609
if (PostLin) {
610
611
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
612
613
for (i=0; i < nOuts; i++) {
614
615
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
616
if (InversePostLin == NULL) {
617
WhiteOut[i] = WhitePointOut[i];
618
619
} else {
620
621
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
622
cmsFreeToneCurve(InversePostLin);
623
}
624
}
625
}
626
else {
627
for (i=0; i < nOuts; i++)
628
WhiteOut[i] = WhitePointOut[i];
629
}
630
631
// Ok, proceed with patching. May fail and we don't care if it fails
632
PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
633
634
return TRUE;
635
}
636
637
// -----------------------------------------------------------------------------------------------------------------------------------------------
638
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
639
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
640
// These curves have to exist in the original LUT in order to be used in the simplified output.
641
// Caller may also use the flags to allow this feature.
642
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
643
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
644
// -----------------------------------------------------------------------------------------------------------------------------------------------
645
646
static
647
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
648
{
649
cmsPipeline* Src = NULL;
650
cmsPipeline* Dest = NULL;
651
cmsStage* CLUT;
652
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
653
cmsUInt32Number nGridPoints;
654
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
655
cmsStage *NewPreLin = NULL;
656
cmsStage *NewPostLin = NULL;
657
_cmsStageCLutData* DataCLUT;
658
cmsToneCurve** DataSetIn;
659
cmsToneCurve** DataSetOut;
660
Prelin16Data* p16;
661
662
// This is a lossy optimization! does not apply in floating-point cases
663
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
664
665
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
666
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
667
668
// Color space must be specified
669
if (ColorSpace == (cmsColorSpaceSignature)0 ||
670
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
671
672
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
673
674
// For empty LUTs, 2 points are enough
675
if (cmsPipelineStageCount(*Lut) == 0)
676
nGridPoints = 2;
677
678
Src = *Lut;
679
680
// Allocate an empty LUT
681
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
682
if (!Dest) return FALSE;
683
684
// Prelinearization tables are kept unless indicated by flags
685
if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
686
687
// Get a pointer to the prelinearization element
688
cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
689
690
// Check if suitable
691
if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
692
693
// Maybe this is a linear tram, so we can avoid the whole stuff
694
if (!AllCurvesAreLinear(PreLin)) {
695
696
// All seems ok, proceed.
697
NewPreLin = cmsStageDup(PreLin);
698
if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
699
goto Error;
700
701
// Remove prelinearization. Since we have duplicated the curve
702
// in destination LUT, the sampling should be applied after this stage.
703
cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
704
}
705
}
706
}
707
708
// Allocate the CLUT
709
CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
710
if (CLUT == NULL) goto Error;
711
712
// Add the CLUT to the destination LUT
713
if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
714
goto Error;
715
}
716
717
// Postlinearization tables are kept unless indicated by flags
718
if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
719
720
// Get a pointer to the postlinearization if present
721
cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
722
723
// Check if suitable
724
if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
725
726
// Maybe this is a linear tram, so we can avoid the whole stuff
727
if (!AllCurvesAreLinear(PostLin)) {
728
729
// All seems ok, proceed.
730
NewPostLin = cmsStageDup(PostLin);
731
if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
732
goto Error;
733
734
// In destination LUT, the sampling should be applied after this stage.
735
cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
736
}
737
}
738
}
739
740
// Now its time to do the sampling. We have to ignore pre/post linearization
741
// The source LUT without pre/post curves is passed as parameter.
742
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
743
Error:
744
// Ops, something went wrong, Restore stages
745
if (KeepPreLin != NULL) {
746
if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
747
_cmsAssert(0); // This never happens
748
}
749
}
750
if (KeepPostLin != NULL) {
751
if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
752
_cmsAssert(0); // This never happens
753
}
754
}
755
cmsPipelineFree(Dest);
756
return FALSE;
757
}
758
759
// Done.
760
761
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
762
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
763
cmsPipelineFree(Src);
764
765
DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
766
767
if (NewPreLin == NULL) DataSetIn = NULL;
768
else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
769
770
if (NewPostLin == NULL) DataSetOut = NULL;
771
else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
772
773
774
if (DataSetIn == NULL && DataSetOut == NULL) {
775
776
_cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
777
}
778
else {
779
780
p16 = PrelinOpt16alloc(Dest ->ContextID,
781
DataCLUT ->Params,
782
Dest ->InputChannels,
783
DataSetIn,
784
Dest ->OutputChannels,
785
DataSetOut);
786
787
_cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
788
}
789
790
791
// Don't fix white on absolute colorimetric
792
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
793
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
794
795
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
796
797
FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
798
}
799
800
*Lut = Dest;
801
return TRUE;
802
803
cmsUNUSED_PARAMETER(Intent);
804
}
805
806
807
// -----------------------------------------------------------------------------------------------------------------------------------------------
808
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
809
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
810
// for RGB transforms. See the paper for more details
811
// -----------------------------------------------------------------------------------------------------------------------------------------------
812
813
814
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
815
// Descending curves are handled as well.
816
static
817
void SlopeLimiting(cmsToneCurve* g)
818
{
819
int BeginVal, EndVal;
820
int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
821
int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
822
cmsFloat64Number Val, Slope, beta;
823
int i;
824
825
if (cmsIsToneCurveDescending(g)) {
826
BeginVal = 0xffff; EndVal = 0;
827
}
828
else {
829
BeginVal = 0; EndVal = 0xffff;
830
}
831
832
// Compute slope and offset for begin of curve
833
Val = g ->Table16[AtBegin];
834
Slope = (Val - BeginVal) / AtBegin;
835
beta = Val - Slope * AtBegin;
836
837
for (i=0; i < AtBegin; i++)
838
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
839
840
// Compute slope and offset for the end
841
Val = g ->Table16[AtEnd];
842
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
843
beta = Val - Slope * AtEnd;
844
845
for (i = AtEnd; i < (int) g ->nEntries; i++)
846
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
847
}
848
849
850
// Precomputes tables for 8-bit on input devicelink.
851
static
852
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
853
{
854
int i;
855
cmsUInt16Number Input[3];
856
cmsS15Fixed16Number v1, v2, v3;
857
Prelin8Data* p8;
858
859
p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
860
if (p8 == NULL) return NULL;
861
862
// Since this only works for 8 bit input, values comes always as x * 257,
863
// we can safely take msb byte (x << 8 + x)
864
865
for (i=0; i < 256; i++) {
866
867
if (G != NULL) {
868
869
// Get 16-bit representation
870
Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
871
Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
872
Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
873
}
874
else {
875
Input[0] = FROM_8_TO_16(i);
876
Input[1] = FROM_8_TO_16(i);
877
Input[2] = FROM_8_TO_16(i);
878
}
879
880
881
// Move to 0..1.0 in fixed domain
882
v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
883
v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
884
v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
885
886
// Store the precalculated table of nodes
887
p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
888
p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
889
p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
890
891
// Store the precalculated table of offsets
892
p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
893
p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
894
p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
895
}
896
897
p8 ->ContextID = ContextID;
898
p8 ->p = p;
899
900
return p8;
901
}
902
903
static
904
void Prelin8free(cmsContext ContextID, void* ptr)
905
{
906
_cmsFree(ContextID, ptr);
907
}
908
909
static
910
void* Prelin8dup(cmsContext ContextID, const void* ptr)
911
{
912
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
913
}
914
915
916
917
// A optimized interpolation for 8-bit input.
918
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
919
static CMS_NO_SANITIZE
920
void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
921
CMSREGISTER cmsUInt16Number Output[],
922
CMSREGISTER const void* D)
923
{
924
925
cmsUInt8Number r, g, b;
926
cmsS15Fixed16Number rx, ry, rz;
927
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
928
int OutChan;
929
CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
930
Prelin8Data* p8 = (Prelin8Data*) D;
931
CMSREGISTER const cmsInterpParams* p = p8 ->p;
932
int TotalOut = (int) p -> nOutputs;
933
const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
934
935
r = (cmsUInt8Number) (Input[0] >> 8);
936
g = (cmsUInt8Number) (Input[1] >> 8);
937
b = (cmsUInt8Number) (Input[2] >> 8);
938
939
X0 = (cmsS15Fixed16Number) p8->X0[r];
940
Y0 = (cmsS15Fixed16Number) p8->Y0[g];
941
Z0 = (cmsS15Fixed16Number) p8->Z0[b];
942
943
rx = p8 ->rx[r];
944
ry = p8 ->ry[g];
945
rz = p8 ->rz[b];
946
947
X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
948
Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
949
Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
950
951
952
// These are the 6 Tetrahedral
953
for (OutChan=0; OutChan < TotalOut; OutChan++) {
954
955
c0 = DENS(X0, Y0, Z0);
956
957
if (rx >= ry && ry >= rz)
958
{
959
c1 = DENS(X1, Y0, Z0) - c0;
960
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
961
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
962
}
963
else
964
if (rx >= rz && rz >= ry)
965
{
966
c1 = DENS(X1, Y0, Z0) - c0;
967
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
968
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
969
}
970
else
971
if (rz >= rx && rx >= ry)
972
{
973
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
974
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
975
c3 = DENS(X0, Y0, Z1) - c0;
976
}
977
else
978
if (ry >= rx && rx >= rz)
979
{
980
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
981
c2 = DENS(X0, Y1, Z0) - c0;
982
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
983
}
984
else
985
if (ry >= rz && rz >= rx)
986
{
987
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
988
c2 = DENS(X0, Y1, Z0) - c0;
989
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
990
}
991
else
992
if (rz >= ry && ry >= rx)
993
{
994
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
995
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
996
c3 = DENS(X0, Y0, Z1) - c0;
997
}
998
else {
999
c1 = c2 = c3 = 0;
1000
}
1001
1002
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1003
Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1004
1005
}
1006
}
1007
1008
#undef DENS
1009
1010
1011
// Curves that contain wide empty areas are not optimizeable
1012
static
1013
cmsBool IsDegenerated(const cmsToneCurve* g)
1014
{
1015
cmsUInt32Number i, Zeros = 0, Poles = 0;
1016
cmsUInt32Number nEntries = g ->nEntries;
1017
1018
for (i=0; i < nEntries; i++) {
1019
1020
if (g ->Table16[i] == 0x0000) Zeros++;
1021
if (g ->Table16[i] == 0xffff) Poles++;
1022
}
1023
1024
if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1025
if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1026
if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1027
1028
return FALSE;
1029
}
1030
1031
// --------------------------------------------------------------------------------------------------------------
1032
// We need xput over here
1033
1034
static
1035
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1036
{
1037
cmsPipeline* OriginalLut;
1038
cmsUInt32Number nGridPoints;
1039
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1040
cmsUInt32Number t, i;
1041
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1042
cmsBool lIsSuitable, lIsLinear;
1043
cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1044
cmsStage* OptimizedCLUTmpe;
1045
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1046
cmsStage* OptimizedPrelinMpe;
1047
cmsToneCurve** OptimizedPrelinCurves;
1048
_cmsStageCLutData* OptimizedPrelinCLUT;
1049
1050
1051
// This is a lossy optimization! does not apply in floating-point cases
1052
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1053
1054
// Only on chunky RGB
1055
if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1056
if (T_PLANAR(*InputFormat)) return FALSE;
1057
1058
if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1059
if (T_PLANAR(*OutputFormat)) return FALSE;
1060
1061
// On 16 bits, user has to specify the feature
1062
if (!_cmsFormatterIs8bit(*InputFormat)) {
1063
if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1064
}
1065
1066
OriginalLut = *Lut;
1067
1068
ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1069
OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1070
1071
// Color space must be specified
1072
if (ColorSpace == (cmsColorSpaceSignature)0 ||
1073
OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1074
1075
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1076
1077
// Empty gamma containers
1078
memset(Trans, 0, sizeof(Trans));
1079
memset(TransReverse, 0, sizeof(TransReverse));
1080
1081
// If the last stage of the original lut are curves, and those curves are
1082
// degenerated, it is likely the transform is squeezing and clipping
1083
// the output from previous CLUT. We cannot optimize this case
1084
{
1085
cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1086
1087
if (last == NULL) goto Error;
1088
if (cmsStageType(last) == cmsSigCurveSetElemType) {
1089
1090
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1091
for (i = 0; i < Data->nCurves; i++) {
1092
if (IsDegenerated(Data->TheCurves[i]))
1093
goto Error;
1094
}
1095
}
1096
}
1097
1098
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1099
Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1100
if (Trans[t] == NULL) goto Error;
1101
}
1102
1103
// Populate the curves
1104
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1105
1106
v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1107
1108
// Feed input with a gray ramp
1109
for (t=0; t < OriginalLut ->InputChannels; t++)
1110
In[t] = v;
1111
1112
// Evaluate the gray value
1113
cmsPipelineEvalFloat(In, Out, OriginalLut);
1114
1115
// Store result in curve
1116
for (t=0; t < OriginalLut ->InputChannels; t++)
1117
{
1118
if (Trans[t]->Table16 != NULL)
1119
Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1120
}
1121
}
1122
1123
// Slope-limit the obtained curves
1124
for (t = 0; t < OriginalLut ->InputChannels; t++)
1125
SlopeLimiting(Trans[t]);
1126
1127
// Check for validity. lIsLinear is here for debug purposes
1128
lIsSuitable = TRUE;
1129
lIsLinear = TRUE;
1130
for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1131
1132
// Exclude if already linear
1133
if (!cmsIsToneCurveLinear(Trans[t]))
1134
lIsLinear = FALSE;
1135
1136
// Exclude if non-monotonic
1137
if (!cmsIsToneCurveMonotonic(Trans[t]))
1138
lIsSuitable = FALSE;
1139
1140
if (IsDegenerated(Trans[t]))
1141
lIsSuitable = FALSE;
1142
}
1143
1144
// If it is not suitable, just quit
1145
if (!lIsSuitable) goto Error;
1146
1147
// Invert curves if possible
1148
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1149
TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1150
if (TransReverse[t] == NULL) goto Error;
1151
}
1152
1153
// Now inset the reversed curves at the begin of transform
1154
LutPlusCurves = cmsPipelineDup(OriginalLut);
1155
if (LutPlusCurves == NULL) goto Error;
1156
1157
if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1158
goto Error;
1159
1160
// Create the result LUT
1161
OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1162
if (OptimizedLUT == NULL) goto Error;
1163
1164
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1165
1166
// Create and insert the curves at the beginning
1167
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1168
goto Error;
1169
1170
// Allocate the CLUT for result
1171
OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1172
1173
// Add the CLUT to the destination LUT
1174
if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1175
goto Error;
1176
1177
// Resample the LUT
1178
if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1179
1180
// Free resources
1181
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1182
1183
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1184
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1185
}
1186
1187
cmsPipelineFree(LutPlusCurves);
1188
1189
1190
OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1191
OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1192
1193
// Set the evaluator if 8-bit
1194
if (_cmsFormatterIs8bit(*InputFormat)) {
1195
1196
Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1197
OptimizedPrelinCLUT ->Params,
1198
OptimizedPrelinCurves);
1199
if (p8 == NULL) return FALSE;
1200
1201
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1202
1203
}
1204
else
1205
{
1206
Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1207
OptimizedPrelinCLUT ->Params,
1208
3, OptimizedPrelinCurves, 3, NULL);
1209
if (p16 == NULL) return FALSE;
1210
1211
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1212
1213
}
1214
1215
// Don't fix white on absolute colorimetric
1216
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1217
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1218
1219
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1220
1221
if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1222
1223
return FALSE;
1224
}
1225
}
1226
1227
// And return the obtained LUT
1228
1229
cmsPipelineFree(OriginalLut);
1230
*Lut = OptimizedLUT;
1231
return TRUE;
1232
1233
Error:
1234
1235
for (t = 0; t < OriginalLut ->InputChannels; t++) {
1236
1237
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1238
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1239
}
1240
1241
if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1242
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1243
1244
return FALSE;
1245
1246
cmsUNUSED_PARAMETER(Intent);
1247
cmsUNUSED_PARAMETER(lIsLinear);
1248
}
1249
1250
1251
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1252
1253
static
1254
void CurvesFree(cmsContext ContextID, void* ptr)
1255
{
1256
Curves16Data* Data = (Curves16Data*) ptr;
1257
cmsUInt32Number i;
1258
1259
for (i=0; i < Data -> nCurves; i++) {
1260
1261
_cmsFree(ContextID, Data ->Curves[i]);
1262
}
1263
1264
_cmsFree(ContextID, Data ->Curves);
1265
_cmsFree(ContextID, ptr);
1266
}
1267
1268
static
1269
void* CurvesDup(cmsContext ContextID, const void* ptr)
1270
{
1271
Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1272
cmsUInt32Number i;
1273
1274
if (Data == NULL) return NULL;
1275
1276
Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1277
1278
for (i=0; i < Data -> nCurves; i++) {
1279
Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1280
}
1281
1282
return (void*) Data;
1283
}
1284
1285
// Precomputes tables for 8-bit on input devicelink.
1286
static
1287
Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1288
{
1289
cmsUInt32Number i, j;
1290
Curves16Data* c16;
1291
1292
c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1293
if (c16 == NULL) return NULL;
1294
1295
c16 ->nCurves = nCurves;
1296
c16 ->nElements = nElements;
1297
1298
c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1299
if (c16->Curves == NULL) {
1300
_cmsFree(ContextID, c16);
1301
return NULL;
1302
}
1303
1304
for (i=0; i < nCurves; i++) {
1305
1306
c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1307
1308
if (c16->Curves[i] == NULL) {
1309
1310
for (j=0; j < i; j++) {
1311
_cmsFree(ContextID, c16->Curves[j]);
1312
}
1313
_cmsFree(ContextID, c16->Curves);
1314
_cmsFree(ContextID, c16);
1315
return NULL;
1316
}
1317
1318
if (nElements == 256U) {
1319
1320
for (j=0; j < nElements; j++) {
1321
1322
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1323
}
1324
}
1325
else {
1326
1327
for (j=0; j < nElements; j++) {
1328
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1329
}
1330
}
1331
}
1332
1333
return c16;
1334
}
1335
1336
static
1337
void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1338
CMSREGISTER cmsUInt16Number Out[],
1339
CMSREGISTER const void* D)
1340
{
1341
Curves16Data* Data = (Curves16Data*) D;
1342
int x;
1343
cmsUInt32Number i;
1344
1345
for (i=0; i < Data ->nCurves; i++) {
1346
1347
x = (In[i] >> 8);
1348
Out[i] = Data -> Curves[i][x];
1349
}
1350
}
1351
1352
1353
static
1354
void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1355
CMSREGISTER cmsUInt16Number Out[],
1356
CMSREGISTER const void* D)
1357
{
1358
Curves16Data* Data = (Curves16Data*) D;
1359
cmsUInt32Number i;
1360
1361
for (i=0; i < Data ->nCurves; i++) {
1362
Out[i] = Data -> Curves[i][In[i]];
1363
}
1364
}
1365
1366
1367
static
1368
void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1369
CMSREGISTER cmsUInt16Number Out[],
1370
CMSREGISTER const void* D)
1371
{
1372
cmsPipeline* Lut = (cmsPipeline*) D;
1373
cmsUInt32Number i;
1374
1375
for (i=0; i < Lut ->InputChannels; i++) {
1376
Out[i] = In[i];
1377
}
1378
}
1379
1380
1381
// If the target LUT holds only curves, the optimization procedure is to join all those
1382
// curves together. That only works on curves and does not work on matrices.
1383
static
1384
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1385
{
1386
cmsToneCurve** GammaTables = NULL;
1387
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1388
cmsUInt32Number i, j;
1389
cmsPipeline* Src = *Lut;
1390
cmsPipeline* Dest = NULL;
1391
cmsStage* mpe;
1392
cmsStage* ObtainedCurves = NULL;
1393
1394
1395
// This is a lossy optimization! does not apply in floating-point cases
1396
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1397
1398
// Only curves in this LUT?
1399
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1400
mpe != NULL;
1401
mpe = cmsStageNext(mpe)) {
1402
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1403
}
1404
1405
// Allocate an empty LUT
1406
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1407
if (Dest == NULL) return FALSE;
1408
1409
// Create target curves
1410
GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1411
if (GammaTables == NULL) goto Error;
1412
1413
for (i=0; i < Src ->InputChannels; i++) {
1414
GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1415
if (GammaTables[i] == NULL) goto Error;
1416
}
1417
1418
// Compute 16 bit result by using floating point
1419
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1420
1421
for (j=0; j < Src ->InputChannels; j++)
1422
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1423
1424
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1425
1426
for (j=0; j < Src ->InputChannels; j++)
1427
GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1428
}
1429
1430
ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1431
if (ObtainedCurves == NULL) goto Error;
1432
1433
for (i=0; i < Src ->InputChannels; i++) {
1434
cmsFreeToneCurve(GammaTables[i]);
1435
GammaTables[i] = NULL;
1436
}
1437
1438
if (GammaTables != NULL) {
1439
_cmsFree(Src->ContextID, GammaTables);
1440
GammaTables = NULL;
1441
}
1442
1443
// Maybe the curves are linear at the end
1444
if (!AllCurvesAreLinear(ObtainedCurves)) {
1445
_cmsStageToneCurvesData* Data;
1446
1447
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1448
goto Error;
1449
Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1450
ObtainedCurves = NULL;
1451
1452
// If the curves are to be applied in 8 bits, we can save memory
1453
if (_cmsFormatterIs8bit(*InputFormat)) {
1454
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1455
1456
if (c16 == NULL) goto Error;
1457
*dwFlags |= cmsFLAGS_NOCACHE;
1458
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1459
1460
}
1461
else {
1462
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1463
1464
if (c16 == NULL) goto Error;
1465
*dwFlags |= cmsFLAGS_NOCACHE;
1466
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1467
}
1468
}
1469
else {
1470
1471
// LUT optimizes to nothing. Set the identity LUT
1472
cmsStageFree(ObtainedCurves);
1473
ObtainedCurves = NULL;
1474
1475
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1476
goto Error;
1477
1478
*dwFlags |= cmsFLAGS_NOCACHE;
1479
_cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1480
}
1481
1482
// We are done.
1483
cmsPipelineFree(Src);
1484
*Lut = Dest;
1485
return TRUE;
1486
1487
Error:
1488
1489
if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1490
if (GammaTables != NULL) {
1491
for (i=0; i < Src ->InputChannels; i++) {
1492
if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1493
}
1494
1495
_cmsFree(Src ->ContextID, GammaTables);
1496
}
1497
1498
if (Dest != NULL) cmsPipelineFree(Dest);
1499
return FALSE;
1500
1501
cmsUNUSED_PARAMETER(Intent);
1502
cmsUNUSED_PARAMETER(InputFormat);
1503
cmsUNUSED_PARAMETER(OutputFormat);
1504
cmsUNUSED_PARAMETER(dwFlags);
1505
}
1506
1507
// -------------------------------------------------------------------------------------------------------------------------------------
1508
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1509
1510
1511
static
1512
void FreeMatShaper(cmsContext ContextID, void* Data)
1513
{
1514
if (Data != NULL) _cmsFree(ContextID, Data);
1515
}
1516
1517
static
1518
void* DupMatShaper(cmsContext ContextID, const void* Data)
1519
{
1520
return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1521
}
1522
1523
1524
// A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
1525
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1526
// in total about 50K, and the performance boost is huge!
1527
static CMS_NO_SANITIZE
1528
void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1529
CMSREGISTER cmsUInt16Number Out[],
1530
CMSREGISTER const void* D)
1531
{
1532
MatShaper8Data* p = (MatShaper8Data*) D;
1533
cmsS1Fixed14Number l1, l2, l3, r, g, b;
1534
cmsUInt32Number ri, gi, bi;
1535
1536
// In this case (and only in this case!) we can use this simplification since
1537
// In[] is assured to come from a 8 bit number. (a << 8 | a)
1538
ri = In[0] & 0xFFU;
1539
gi = In[1] & 0xFFU;
1540
bi = In[2] & 0xFFU;
1541
1542
// Across first shaper, which also converts to 1.14 fixed point
1543
r = p->Shaper1R[ri];
1544
g = p->Shaper1G[gi];
1545
b = p->Shaper1B[bi];
1546
1547
// Evaluate the matrix in 1.14 fixed point
1548
l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1549
l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1550
l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1551
1552
// Now we have to clip to 0..1.0 range
1553
ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1554
gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1555
bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1556
1557
// And across second shaper,
1558
Out[0] = p->Shaper2R[ri];
1559
Out[1] = p->Shaper2G[gi];
1560
Out[2] = p->Shaper2B[bi];
1561
1562
}
1563
1564
// This table converts from 8 bits to 1.14 after applying the curve
1565
static
1566
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1567
{
1568
int i;
1569
cmsFloat32Number R, y;
1570
1571
for (i=0; i < 256; i++) {
1572
1573
R = (cmsFloat32Number) (i / 255.0);
1574
y = cmsEvalToneCurveFloat(Curve, R);
1575
1576
if (y < 131072.0)
1577
Table[i] = DOUBLE_TO_1FIXED14(y);
1578
else
1579
Table[i] = 0x7fffffff;
1580
}
1581
}
1582
1583
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1584
static
1585
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1586
{
1587
int i;
1588
cmsFloat32Number R, Val;
1589
1590
for (i=0; i < 16385; i++) {
1591
1592
R = (cmsFloat32Number) (i / 16384.0);
1593
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1594
1595
if (Val < 0)
1596
Val = 0;
1597
1598
if (Val > 1.0)
1599
Val = 1.0;
1600
1601
if (Is8BitsOutput) {
1602
1603
// If 8 bits output, we can optimize further by computing the / 257 part.
1604
// first we compute the resulting byte and then we store the byte times
1605
// 257. This quantization allows to round very quick by doing a >> 8, but
1606
// since the low byte is always equal to msb, we can do a & 0xff and this works!
1607
cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1608
cmsUInt8Number b = FROM_16_TO_8(w);
1609
1610
Table[i] = FROM_8_TO_16(b);
1611
}
1612
else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1613
}
1614
}
1615
1616
// Compute the matrix-shaper structure
1617
static
1618
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1619
{
1620
MatShaper8Data* p;
1621
int i, j;
1622
cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1623
1624
// Allocate a big chuck of memory to store precomputed tables
1625
p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1626
if (p == NULL) return FALSE;
1627
1628
p -> ContextID = Dest -> ContextID;
1629
1630
// Precompute tables
1631
FillFirstShaper(p ->Shaper1R, Curve1[0]);
1632
FillFirstShaper(p ->Shaper1G, Curve1[1]);
1633
FillFirstShaper(p ->Shaper1B, Curve1[2]);
1634
1635
FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1636
FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1637
FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1638
1639
// Convert matrix to nFixed14. Note that those values may take more than 16 bits
1640
for (i=0; i < 3; i++) {
1641
for (j=0; j < 3; j++) {
1642
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1643
}
1644
}
1645
1646
for (i=0; i < 3; i++) {
1647
1648
if (Off == NULL) {
1649
p ->Off[i] = 0;
1650
}
1651
else {
1652
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1653
}
1654
}
1655
1656
// Mark as optimized for faster formatter
1657
if (Is8Bits)
1658
*OutputFormat |= OPTIMIZED_SH(1);
1659
1660
// Fill function pointers
1661
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1662
return TRUE;
1663
}
1664
1665
// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1666
static
1667
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1668
{
1669
cmsStage* Curve1, *Curve2;
1670
cmsStage* Matrix1, *Matrix2;
1671
cmsMAT3 res;
1672
cmsBool IdentityMat;
1673
cmsPipeline* Dest, *Src;
1674
cmsFloat64Number* Offset;
1675
1676
// Only works on RGB to RGB
1677
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1678
1679
// Only works on 8 bit input
1680
if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1681
1682
// Seems suitable, proceed
1683
Src = *Lut;
1684
1685
// Check for:
1686
//
1687
// shaper-matrix-matrix-shaper
1688
// shaper-matrix-shaper
1689
//
1690
// Both of those constructs are possible (first because abs. colorimetric).
1691
// additionally, In the first case, the input matrix offset should be zero.
1692
1693
IdentityMat = FALSE;
1694
if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1695
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1696
&Curve1, &Matrix1, &Matrix2, &Curve2)) {
1697
1698
// Get both matrices
1699
_cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1700
_cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1701
1702
// Only RGB to RGB
1703
if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
1704
Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
1705
1706
// Input offset should be zero
1707
if (Data1->Offset != NULL) return FALSE;
1708
1709
// Multiply both matrices to get the result
1710
_cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1711
1712
// Only 2nd matrix has offset, or it is zero
1713
Offset = Data2->Offset;
1714
1715
// Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1716
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1717
1718
// We can get rid of full matrix
1719
IdentityMat = TRUE;
1720
}
1721
1722
}
1723
else {
1724
1725
if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1726
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1727
&Curve1, &Matrix1, &Curve2)) {
1728
1729
_cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1730
1731
if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE;
1732
1733
// Copy the matrix to our result
1734
memcpy(&res, Data->Double, sizeof(res));
1735
1736
// Preserve the Odffset (may be NULL as a zero offset)
1737
Offset = Data->Offset;
1738
1739
if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1740
1741
// We can get rid of full matrix
1742
IdentityMat = TRUE;
1743
}
1744
}
1745
else
1746
return FALSE; // Not optimizeable this time
1747
1748
}
1749
1750
// Allocate an empty LUT
1751
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1752
if (!Dest) return FALSE;
1753
1754
// Assamble the new LUT
1755
if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1756
goto Error;
1757
1758
if (!IdentityMat) {
1759
1760
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1761
goto Error;
1762
}
1763
1764
if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1765
goto Error;
1766
1767
// If identity on matrix, we can further optimize the curves, so call the join curves routine
1768
if (IdentityMat) {
1769
1770
OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1771
}
1772
else {
1773
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1774
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1775
1776
// In this particular optimization, cache does not help as it takes more time to deal with
1777
// the cache than with the pixel handling
1778
*dwFlags |= cmsFLAGS_NOCACHE;
1779
1780
// Setup the optimizarion routines
1781
SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1782
}
1783
1784
cmsPipelineFree(Src);
1785
*Lut = Dest;
1786
return TRUE;
1787
Error:
1788
// Leave Src unchanged
1789
cmsPipelineFree(Dest);
1790
return FALSE;
1791
}
1792
1793
1794
// -------------------------------------------------------------------------------------------------------------------------------------
1795
// Optimization plug-ins
1796
1797
// List of optimizations
1798
typedef struct _cmsOptimizationCollection_st {
1799
1800
_cmsOPToptimizeFn OptimizePtr;
1801
1802
struct _cmsOptimizationCollection_st *Next;
1803
1804
} _cmsOptimizationCollection;
1805
1806
1807
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1808
static _cmsOptimizationCollection DefaultOptimization[] = {
1809
1810
{ OptimizeByJoiningCurves, &DefaultOptimization[1] },
1811
{ OptimizeMatrixShaper, &DefaultOptimization[2] },
1812
{ OptimizeByComputingLinearization, &DefaultOptimization[3] },
1813
{ OptimizeByResampling, NULL }
1814
};
1815
1816
// The linked list head
1817
_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1818
1819
1820
// Duplicates the zone of memory used by the plug-in in the new context
1821
static
1822
void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1823
const struct _cmsContext_struct* src)
1824
{
1825
_cmsOptimizationPluginChunkType newHead = { NULL };
1826
_cmsOptimizationCollection* entry;
1827
_cmsOptimizationCollection* Anterior = NULL;
1828
_cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1829
1830
_cmsAssert(ctx != NULL);
1831
_cmsAssert(head != NULL);
1832
1833
// Walk the list copying all nodes
1834
for (entry = head->OptimizationCollection;
1835
entry != NULL;
1836
entry = entry ->Next) {
1837
1838
_cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1839
1840
if (newEntry == NULL)
1841
return;
1842
1843
// We want to keep the linked list order, so this is a little bit tricky
1844
newEntry -> Next = NULL;
1845
if (Anterior)
1846
Anterior -> Next = newEntry;
1847
1848
Anterior = newEntry;
1849
1850
if (newHead.OptimizationCollection == NULL)
1851
newHead.OptimizationCollection = newEntry;
1852
}
1853
1854
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1855
}
1856
1857
void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1858
const struct _cmsContext_struct* src)
1859
{
1860
if (src != NULL) {
1861
1862
// Copy all linked list
1863
DupPluginOptimizationList(ctx, src);
1864
}
1865
else {
1866
static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1867
ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1868
}
1869
}
1870
1871
1872
// Register new ways to optimize
1873
cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1874
{
1875
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1876
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1877
_cmsOptimizationCollection* fl;
1878
1879
if (Data == NULL) {
1880
1881
ctx->OptimizationCollection = NULL;
1882
return TRUE;
1883
}
1884
1885
// Optimizer callback is required
1886
if (Plugin ->OptimizePtr == NULL) return FALSE;
1887
1888
fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1889
if (fl == NULL) return FALSE;
1890
1891
// Copy the parameters
1892
fl ->OptimizePtr = Plugin ->OptimizePtr;
1893
1894
// Keep linked list
1895
fl ->Next = ctx->OptimizationCollection;
1896
1897
// Set the head
1898
ctx ->OptimizationCollection = fl;
1899
1900
// All is ok
1901
return TRUE;
1902
}
1903
1904
// The entry point for LUT optimization
1905
cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1906
cmsPipeline** PtrLut,
1907
cmsUInt32Number Intent,
1908
cmsUInt32Number* InputFormat,
1909
cmsUInt32Number* OutputFormat,
1910
cmsUInt32Number* dwFlags)
1911
{
1912
_cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1913
_cmsOptimizationCollection* Opts;
1914
cmsBool AnySuccess = FALSE;
1915
cmsStage* mpe;
1916
1917
// A CLUT is being asked, so force this specific optimization
1918
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1919
1920
PreOptimize(*PtrLut);
1921
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1922
}
1923
1924
// Anything to optimize?
1925
if ((*PtrLut) ->Elements == NULL) {
1926
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1927
return TRUE;
1928
}
1929
1930
// Named color pipelines cannot be optimized
1931
for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
1932
mpe != NULL;
1933
mpe = cmsStageNext(mpe)) {
1934
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1935
}
1936
1937
// Try to get rid of identities and trivial conversions.
1938
AnySuccess = PreOptimize(*PtrLut);
1939
1940
// After removal do we end with an identity?
1941
if ((*PtrLut) ->Elements == NULL) {
1942
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1943
return TRUE;
1944
}
1945
1946
// Do not optimize, keep all precision
1947
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1948
return FALSE;
1949
1950
// Try plug-in optimizations
1951
for (Opts = ctx->OptimizationCollection;
1952
Opts != NULL;
1953
Opts = Opts ->Next) {
1954
1955
// If one schema succeeded, we are done
1956
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1957
1958
return TRUE; // Optimized!
1959
}
1960
}
1961
1962
// Try built-in optimizations
1963
for (Opts = DefaultOptimization;
1964
Opts != NULL;
1965
Opts = Opts ->Next) {
1966
1967
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1968
1969
return TRUE;
1970
}
1971
}
1972
1973
// Only simple optimizations succeeded
1974
return AnySuccess;
1975
}
1976
1977