Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/lcms2/src/cmswtpnt.c
4391 views
1
//---------------------------------------------------------------------------------
2
//
3
// Little Color Management System
4
// Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
27
#include "lcms2_internal.h"
28
29
30
// D50 - Widely used
31
const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
32
{
33
static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};
34
35
return &D50XYZ;
36
}
37
38
const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
39
{
40
static cmsCIExyY D50xyY;
41
42
cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());
43
44
return &D50xyY;
45
}
46
47
// Obtains WhitePoint from Temperature
48
cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
49
{
50
cmsFloat64Number x, y;
51
cmsFloat64Number T, T2, T3;
52
// cmsFloat64Number M1, M2;
53
54
_cmsAssert(WhitePoint != NULL);
55
56
T = TempK;
57
T2 = T*T; // Square
58
T3 = T2*T; // Cube
59
60
// For correlated color temperature (T) between 4000K and 7000K:
61
62
if (T >= 4000. && T <= 7000.)
63
{
64
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
65
}
66
else
67
// or for correlated color temperature (T) between 7000K and 25000K:
68
69
if (T > 7000.0 && T <= 25000.0)
70
{
71
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
72
}
73
else {
74
cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
75
return FALSE;
76
}
77
78
// Obtain y(x)
79
y = -3.000*(x*x) + 2.870*x - 0.275;
80
81
// wave factors (not used, but here for futures extensions)
82
83
// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
84
// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
85
86
WhitePoint -> x = x;
87
WhitePoint -> y = y;
88
WhitePoint -> Y = 1.0;
89
90
return TRUE;
91
}
92
93
94
95
typedef struct {
96
97
cmsFloat64Number mirek; // temp (in microreciprocal kelvin)
98
cmsFloat64Number ut; // u coord of intersection w/ blackbody locus
99
cmsFloat64Number vt; // v coord of intersection w/ blackbody locus
100
cmsFloat64Number tt; // slope of ISOTEMPERATURE. line
101
102
} ISOTEMPERATURE;
103
104
static const ISOTEMPERATURE isotempdata[] = {
105
// {Mirek, Ut, Vt, Tt }
106
{0, 0.18006, 0.26352, -0.24341},
107
{10, 0.18066, 0.26589, -0.25479},
108
{20, 0.18133, 0.26846, -0.26876},
109
{30, 0.18208, 0.27119, -0.28539},
110
{40, 0.18293, 0.27407, -0.30470},
111
{50, 0.18388, 0.27709, -0.32675},
112
{60, 0.18494, 0.28021, -0.35156},
113
{70, 0.18611, 0.28342, -0.37915},
114
{80, 0.18740, 0.28668, -0.40955},
115
{90, 0.18880, 0.28997, -0.44278},
116
{100, 0.19032, 0.29326, -0.47888},
117
{125, 0.19462, 0.30141, -0.58204},
118
{150, 0.19962, 0.30921, -0.70471},
119
{175, 0.20525, 0.31647, -0.84901},
120
{200, 0.21142, 0.32312, -1.0182 },
121
{225, 0.21807, 0.32909, -1.2168 },
122
{250, 0.22511, 0.33439, -1.4512 },
123
{275, 0.23247, 0.33904, -1.7298 },
124
{300, 0.24010, 0.34308, -2.0637 },
125
{325, 0.24702, 0.34655, -2.4681 },
126
{350, 0.25591, 0.34951, -2.9641 },
127
{375, 0.26400, 0.35200, -3.5814 },
128
{400, 0.27218, 0.35407, -4.3633 },
129
{425, 0.28039, 0.35577, -5.3762 },
130
{450, 0.28863, 0.35714, -6.7262 },
131
{475, 0.29685, 0.35823, -8.5955 },
132
{500, 0.30505, 0.35907, -11.324 },
133
{525, 0.31320, 0.35968, -15.628 },
134
{550, 0.32129, 0.36011, -23.325 },
135
{575, 0.32931, 0.36038, -40.770 },
136
{600, 0.33724, 0.36051, -116.45 }
137
};
138
139
#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
140
141
142
// Robertson's method
143
cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
144
{
145
cmsUInt32Number j;
146
cmsFloat64Number us,vs;
147
cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
148
cmsFloat64Number xs, ys;
149
150
_cmsAssert(WhitePoint != NULL);
151
_cmsAssert(TempK != NULL);
152
153
di = mi = 0;
154
xs = WhitePoint -> x;
155
ys = WhitePoint -> y;
156
157
// convert (x,y) to CIE 1960 (u,WhitePoint)
158
159
us = (2*xs) / (-xs + 6*ys + 1.5);
160
vs = (3*ys) / (-xs + 6*ys + 1.5);
161
162
163
for (j=0; j < NISO; j++) {
164
165
uj = isotempdata[j].ut;
166
vj = isotempdata[j].vt;
167
tj = isotempdata[j].tt;
168
mj = isotempdata[j].mirek;
169
170
dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);
171
172
if ((j != 0) && (di/dj < 0.0)) {
173
174
// Found a match
175
*TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
176
return TRUE;
177
}
178
179
di = dj;
180
mi = mj;
181
}
182
183
// Not found
184
return FALSE;
185
}
186
187
188
// Compute chromatic adaptation matrix using Chad as cone matrix
189
190
static
191
cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
192
const cmsCIEXYZ* SourceWhitePoint,
193
const cmsCIEXYZ* DestWhitePoint,
194
const cmsMAT3* Chad)
195
196
{
197
198
cmsMAT3 Chad_Inv;
199
cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
200
cmsVEC3 ConeDestXYZ, ConeDestRGB;
201
cmsMAT3 Cone, Tmp;
202
203
204
Tmp = *Chad;
205
if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;
206
207
_cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
208
SourceWhitePoint -> Y,
209
SourceWhitePoint -> Z);
210
211
_cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X,
212
DestWhitePoint -> Y,
213
DestWhitePoint -> Z);
214
215
_cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
216
_cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
217
218
if ((fabs(ConeSourceRGB.n[0]) < MATRIX_DET_TOLERANCE) ||
219
(fabs(ConeSourceRGB.n[1]) < MATRIX_DET_TOLERANCE) ||
220
(fabs(ConeSourceRGB.n[2]) < MATRIX_DET_TOLERANCE)) return FALSE;
221
222
// Build matrix
223
_cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
224
_cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
225
_cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
226
227
// Normalize
228
_cmsMAT3per(&Tmp, &Cone, Chad);
229
_cmsMAT3per(Conversion, &Chad_Inv, &Tmp);
230
231
return TRUE;
232
}
233
234
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
235
// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
236
cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
237
{
238
cmsMAT3 LamRigg = {{ // Bradford matrix
239
{{ 0.8951, 0.2664, -0.1614 }},
240
{{ -0.7502, 1.7135, 0.0367 }},
241
{{ 0.0389, -0.0685, 1.0296 }}
242
}};
243
244
if (ConeMatrix == NULL)
245
ConeMatrix = &LamRigg;
246
247
return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
248
}
249
250
// Same as anterior, but assuming D50 destination. White point is given in xyY
251
static
252
cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
253
{
254
cmsCIEXYZ Dn;
255
cmsMAT3 Bradford;
256
cmsMAT3 Tmp;
257
258
cmsxyY2XYZ(&Dn, SourceWhitePt);
259
260
if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;
261
262
Tmp = *r;
263
_cmsMAT3per(r, &Bradford, &Tmp);
264
265
return TRUE;
266
}
267
268
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
269
// This is just an approximation, I am not handling all the non-linear
270
// aspects of the RGB to XYZ process, and assuming that the gamma correction
271
// has transitive property in the transformation chain.
272
//
273
// the algorithm:
274
//
275
// - First I build the absolute conversion matrix using
276
// primaries in XYZ. This matrix is next inverted
277
// - Then I eval the source white point across this matrix
278
// obtaining the coefficients of the transformation
279
// - Then, I apply these coefficients to the original matrix
280
//
281
cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
282
{
283
cmsVEC3 WhitePoint, Coef;
284
cmsMAT3 Result, Primaries;
285
cmsFloat64Number xn, yn;
286
cmsFloat64Number xr, yr;
287
cmsFloat64Number xg, yg;
288
cmsFloat64Number xb, yb;
289
290
xn = WhitePt -> x;
291
yn = WhitePt -> y;
292
xr = Primrs -> Red.x;
293
yr = Primrs -> Red.y;
294
xg = Primrs -> Green.x;
295
yg = Primrs -> Green.y;
296
xb = Primrs -> Blue.x;
297
yb = Primrs -> Blue.y;
298
299
// Build Primaries matrix
300
_cmsVEC3init(&Primaries.v[0], xr, xg, xb);
301
_cmsVEC3init(&Primaries.v[1], yr, yg, yb);
302
_cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
303
304
305
// Result = Primaries ^ (-1) inverse matrix
306
if (!_cmsMAT3inverse(&Primaries, &Result))
307
return FALSE;
308
309
310
_cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
311
312
// Across inverse primaries ...
313
_cmsMAT3eval(&Coef, &Result, &WhitePoint);
314
315
// Give us the Coefs, then I build transformation matrix
316
_cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
317
_cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
318
_cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
319
320
321
return _cmsAdaptMatrixToD50(r, WhitePt);
322
323
}
324
325
326
// Adapts a color to a given illuminant. Original color is expected to have
327
// a SourceWhitePt white point.
328
cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
329
const cmsCIEXYZ* SourceWhitePt,
330
const cmsCIEXYZ* Illuminant,
331
const cmsCIEXYZ* Value)
332
{
333
cmsMAT3 Bradford;
334
cmsVEC3 In, Out;
335
336
_cmsAssert(Result != NULL);
337
_cmsAssert(SourceWhitePt != NULL);
338
_cmsAssert(Illuminant != NULL);
339
_cmsAssert(Value != NULL);
340
341
if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;
342
343
_cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
344
_cmsMAT3eval(&Out, &Bradford, &In);
345
346
Result -> X = Out.n[0];
347
Result -> Y = Out.n[1];
348
Result -> Z = Out.n[2];
349
350
return TRUE;
351
}
352
353