Path: blob/master/libs/musl/src/math/__rem_pio2_large.c
4397 views
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunSoft, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/11/*12* __rem_pio2_large(x,y,e0,nx,prec)13* double x[],y[]; int e0,nx,prec;14*15* __rem_pio2_large return the last three digits of N with16* y = x - N*pi/217* so that |y| < pi/2.18*19* The method is to compute the integer (mod 8) and fraction parts of20* (2/pi)*x without doing the full multiplication. In general we21* skip the part of the product that are known to be a huge integer (22* more accurately, = 0 mod 8 ). Thus the number of operations are23* independent of the exponent of the input.24*25* (2/pi) is represented by an array of 24-bit integers in ipio2[].26*27* Input parameters:28* x[] The input value (must be positive) is broken into nx29* pieces of 24-bit integers in double precision format.30* x[i] will be the i-th 24 bit of x. The scaled exponent31* of x[0] is given in input parameter e0 (i.e., x[0]*2^e032* match x's up to 24 bits.33*34* Example of breaking a double positive z into x[0]+x[1]+x[2]:35* e0 = ilogb(z)-2336* z = scalbn(z,-e0)37* for i = 0,1,238* x[i] = floor(z)39* z = (z-x[i])*2**2440*41*42* y[] ouput result in an array of double precision numbers.43* The dimension of y[] is:44* 24-bit precision 145* 53-bit precision 246* 64-bit precision 247* 113-bit precision 348* The actual value is the sum of them. Thus for 113-bit49* precison, one may have to do something like:50*51* long double t,w,r_head, r_tail;52* t = (long double)y[2] + (long double)y[1];53* w = (long double)y[0];54* r_head = t+w;55* r_tail = w - (r_head - t);56*57* e0 The exponent of x[0]. Must be <= 16360 or you need to58* expand the ipio2 table.59*60* nx dimension of x[]61*62* prec an integer indicating the precision:63* 0 24 bits (single)64* 1 53 bits (double)65* 2 64 bits (extended)66* 3 113 bits (quad)67*68* External function:69* double scalbn(), floor();70*71*72* Here is the description of some local variables:73*74* jk jk+1 is the initial number of terms of ipio2[] needed75* in the computation. The minimum and recommended value76* for jk is 3,4,4,6 for single, double, extended, and quad.77* jk+1 must be 2 larger than you might expect so that our78* recomputation test works. (Up to 24 bits in the integer79* part (the 24 bits of it that we compute) and 23 bits in80* the fraction part may be lost to cancelation before we81* recompute.)82*83* jz local integer variable indicating the number of84* terms of ipio2[] used.85*86* jx nx - 187*88* jv index for pointing to the suitable ipio2[] for the89* computation. In general, we want90* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/891* is an integer. Thus92* e0-3-24*jv >= 0 or (e0-3)/24 >= jv93* Hence jv = max(0,(e0-3)/24).94*95* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.96*97* q[] double array with integral value, representing the98* 24-bits chunk of the product of x and 2/pi.99*100* q0 the corresponding exponent of q[0]. Note that the101* exponent for q[i] would be q0-24*i.102*103* PIo2[] double precision array, obtained by cutting pi/2104* into 24 bits chunks.105*106* f[] ipio2[] in floating point107*108* iq[] integer array by breaking up q[] in 24-bits chunk.109*110* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]111*112* ih integer. If >0 it indicates q[] is >= 0.5, hence113* it also indicates the *sign* of the result.114*115*/116/*117* Constants:118* The hexadecimal values are the intended ones for the following119* constants. The decimal values may be used, provided that the120* compiler will convert from decimal to binary accurately enough121* to produce the hexadecimal values shown.122*/123124#include "libm.h"125126static const int init_jk[] = {3,4,4,6}; /* initial value for jk */127128/*129* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi130*131* integer array, contains the (24*i)-th to (24*i+23)-th132* bit of 2/pi after binary point. The corresponding133* floating value is134*135* ipio2[i] * 2^(-24(i+1)).136*137* NB: This table must have at least (e0-3)/24 + jk terms.138* For quad precision (e0 <= 16360, jk = 6), this is 686.139*/140static const int32_t ipio2[] = {1410xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,1420x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,1430x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,1440xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,1450x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,1460x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,1470x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,1480xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,1490x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,1500x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,1510x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,152153#if LDBL_MAX_EXP > 10241540x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,1550xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,1560xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,1570xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,1580x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,1590x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,1600xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,1610xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,1620xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,1630xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,1640x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,1650xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,1660x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,1670x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,1680xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,1690xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,1700xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,1710x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,1720xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,1730x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,1740xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,1750x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,1760x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,1770x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,1780xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,1790x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,1800x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,1810xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,1820x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,1830x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,1840x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,1850x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,1860x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,1870x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,1880xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,1890x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,1900xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,1910xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,1920xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,1930xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,1940x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,1950x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,1960x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,1970xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,1980x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,1990x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,2000x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,2010xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,2020x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,2030xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,2040xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,2050x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,2060x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,2070x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,2080xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,2090x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,2100x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,2110xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,2120x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,2130xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,2140xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,2150x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,2160xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,2170x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,2180xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,2190x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,2200x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,2210x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,2220xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,2230x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,2240xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,2250x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,2260xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,2270x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,2280x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,2290xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,2300x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,2310xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,2320x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,2330x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,2340x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,2350x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,2360xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,2370xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,2380x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,2390xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,2400x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,2410xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,2420xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,2430x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,2440xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,2450x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,2460x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,2470x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,2480xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,2490xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,2500x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,2510x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,2520xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,2530x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,2540x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,2550x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,2560x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,2570x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,258#endif259};260261static const double PIo2[] = {2621.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */2637.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */2645.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */2653.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */2661.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */2671.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */2682.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */2692.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */270};271272int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)273{274int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;275double z,fw,f[20],fq[20],q[20];276277/* initialize jk*/278jk = init_jk[prec];279jp = jk;280281/* determine jx,jv,q0, note that 3>q0 */282jx = nx-1;283jv = (e0-3)/24; if(jv<0) jv=0;284q0 = e0-24*(jv+1);285286/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */287j = jv-jx; m = jx+jk;288for (i=0; i<=m; i++,j++)289f[i] = j<0 ? 0.0 : (double)ipio2[j];290291/* compute q[0],q[1],...q[jk] */292for (i=0; i<=jk; i++) {293for (j=0,fw=0.0; j<=jx; j++)294fw += x[j]*f[jx+i-j];295q[i] = fw;296}297298jz = jk;299recompute:300/* distill q[] into iq[] reversingly */301for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {302fw = (double)(int32_t)(0x1p-24*z);303iq[i] = (int32_t)(z - 0x1p24*fw);304z = q[j-1]+fw;305}306307/* compute n */308z = scalbn(z,q0); /* actual value of z */309z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */310n = (int32_t)z;311z -= (double)n;312ih = 0;313if (q0 > 0) { /* need iq[jz-1] to determine n */314i = iq[jz-1]>>(24-q0); n += i;315iq[jz-1] -= i<<(24-q0);316ih = iq[jz-1]>>(23-q0);317}318else if (q0 == 0) ih = iq[jz-1]>>23;319else if (z >= 0.5) ih = 2;320321if (ih > 0) { /* q > 0.5 */322n += 1; carry = 0;323for (i=0; i<jz; i++) { /* compute 1-q */324j = iq[i];325if (carry == 0) {326if (j != 0) {327carry = 1;328iq[i] = 0x1000000 - j;329}330} else331iq[i] = 0xffffff - j;332}333if (q0 > 0) { /* rare case: chance is 1 in 12 */334switch(q0) {335case 1:336iq[jz-1] &= 0x7fffff; break;337case 2:338iq[jz-1] &= 0x3fffff; break;339}340}341if (ih == 2) {342z = 1.0 - z;343if (carry != 0)344z -= scalbn(1.0,q0);345}346}347348/* check if recomputation is needed */349if (z == 0.0) {350j = 0;351for (i=jz-1; i>=jk; i--) j |= iq[i];352if (j == 0) { /* need recomputation */353for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */354355for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */356f[jx+i] = (double)ipio2[jv+i];357for (j=0,fw=0.0; j<=jx; j++)358fw += x[j]*f[jx+i-j];359q[i] = fw;360}361jz += k;362goto recompute;363}364}365366/* chop off zero terms */367if (z == 0.0) {368jz -= 1;369q0 -= 24;370while (iq[jz] == 0) {371jz--;372q0 -= 24;373}374} else { /* break z into 24-bit if necessary */375z = scalbn(z,-q0);376if (z >= 0x1p24) {377fw = (double)(int32_t)(0x1p-24*z);378iq[jz] = (int32_t)(z - 0x1p24*fw);379jz += 1;380q0 += 24;381iq[jz] = (int32_t)fw;382} else383iq[jz] = (int32_t)z;384}385386/* convert integer "bit" chunk to floating-point value */387fw = scalbn(1.0,q0);388for (i=jz; i>=0; i--) {389q[i] = fw*(double)iq[i];390fw *= 0x1p-24;391}392393/* compute PIo2[0,...,jp]*q[jz,...,0] */394for(i=jz; i>=0; i--) {395for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)396fw += PIo2[k]*q[i+k];397fq[jz-i] = fw;398}399400/* compress fq[] into y[] */401switch(prec) {402case 0:403fw = 0.0;404for (i=jz; i>=0; i--)405fw += fq[i];406y[0] = ih==0 ? fw : -fw;407break;408case 1:409case 2:410fw = 0.0;411for (i=jz; i>=0; i--)412fw += fq[i];413// TODO: drop excess precision here once double_t is used414fw = (double)fw;415y[0] = ih==0 ? fw : -fw;416fw = fq[0]-fw;417for (i=1; i<=jz; i++)418fw += fq[i];419y[1] = ih==0 ? fw : -fw;420break;421case 3: /* painful */422for (i=jz; i>0; i--) {423fw = fq[i-1]+fq[i];424fq[i] += fq[i-1]-fw;425fq[i-1] = fw;426}427for (i=jz; i>1; i--) {428fw = fq[i-1]+fq[i];429fq[i] += fq[i-1]-fw;430fq[i-1] = fw;431}432for (fw=0.0,i=jz; i>=2; i--)433fw += fq[i];434if (ih==0) {435y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;436} else {437y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;438}439}440return n&7;441}442443444