Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/musl/src/math/__rem_pio2_large.c
4397 views
1
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunSoft, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
/*
13
* __rem_pio2_large(x,y,e0,nx,prec)
14
* double x[],y[]; int e0,nx,prec;
15
*
16
* __rem_pio2_large return the last three digits of N with
17
* y = x - N*pi/2
18
* so that |y| < pi/2.
19
*
20
* The method is to compute the integer (mod 8) and fraction parts of
21
* (2/pi)*x without doing the full multiplication. In general we
22
* skip the part of the product that are known to be a huge integer (
23
* more accurately, = 0 mod 8 ). Thus the number of operations are
24
* independent of the exponent of the input.
25
*
26
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
27
*
28
* Input parameters:
29
* x[] The input value (must be positive) is broken into nx
30
* pieces of 24-bit integers in double precision format.
31
* x[i] will be the i-th 24 bit of x. The scaled exponent
32
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
33
* match x's up to 24 bits.
34
*
35
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
36
* e0 = ilogb(z)-23
37
* z = scalbn(z,-e0)
38
* for i = 0,1,2
39
* x[i] = floor(z)
40
* z = (z-x[i])*2**24
41
*
42
*
43
* y[] ouput result in an array of double precision numbers.
44
* The dimension of y[] is:
45
* 24-bit precision 1
46
* 53-bit precision 2
47
* 64-bit precision 2
48
* 113-bit precision 3
49
* The actual value is the sum of them. Thus for 113-bit
50
* precison, one may have to do something like:
51
*
52
* long double t,w,r_head, r_tail;
53
* t = (long double)y[2] + (long double)y[1];
54
* w = (long double)y[0];
55
* r_head = t+w;
56
* r_tail = w - (r_head - t);
57
*
58
* e0 The exponent of x[0]. Must be <= 16360 or you need to
59
* expand the ipio2 table.
60
*
61
* nx dimension of x[]
62
*
63
* prec an integer indicating the precision:
64
* 0 24 bits (single)
65
* 1 53 bits (double)
66
* 2 64 bits (extended)
67
* 3 113 bits (quad)
68
*
69
* External function:
70
* double scalbn(), floor();
71
*
72
*
73
* Here is the description of some local variables:
74
*
75
* jk jk+1 is the initial number of terms of ipio2[] needed
76
* in the computation. The minimum and recommended value
77
* for jk is 3,4,4,6 for single, double, extended, and quad.
78
* jk+1 must be 2 larger than you might expect so that our
79
* recomputation test works. (Up to 24 bits in the integer
80
* part (the 24 bits of it that we compute) and 23 bits in
81
* the fraction part may be lost to cancelation before we
82
* recompute.)
83
*
84
* jz local integer variable indicating the number of
85
* terms of ipio2[] used.
86
*
87
* jx nx - 1
88
*
89
* jv index for pointing to the suitable ipio2[] for the
90
* computation. In general, we want
91
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
92
* is an integer. Thus
93
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
94
* Hence jv = max(0,(e0-3)/24).
95
*
96
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
97
*
98
* q[] double array with integral value, representing the
99
* 24-bits chunk of the product of x and 2/pi.
100
*
101
* q0 the corresponding exponent of q[0]. Note that the
102
* exponent for q[i] would be q0-24*i.
103
*
104
* PIo2[] double precision array, obtained by cutting pi/2
105
* into 24 bits chunks.
106
*
107
* f[] ipio2[] in floating point
108
*
109
* iq[] integer array by breaking up q[] in 24-bits chunk.
110
*
111
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
112
*
113
* ih integer. If >0 it indicates q[] is >= 0.5, hence
114
* it also indicates the *sign* of the result.
115
*
116
*/
117
/*
118
* Constants:
119
* The hexadecimal values are the intended ones for the following
120
* constants. The decimal values may be used, provided that the
121
* compiler will convert from decimal to binary accurately enough
122
* to produce the hexadecimal values shown.
123
*/
124
125
#include "libm.h"
126
127
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
128
129
/*
130
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
131
*
132
* integer array, contains the (24*i)-th to (24*i+23)-th
133
* bit of 2/pi after binary point. The corresponding
134
* floating value is
135
*
136
* ipio2[i] * 2^(-24(i+1)).
137
*
138
* NB: This table must have at least (e0-3)/24 + jk terms.
139
* For quad precision (e0 <= 16360, jk = 6), this is 686.
140
*/
141
static const int32_t ipio2[] = {
142
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
143
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
144
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
145
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
146
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
147
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
148
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
149
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
150
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
151
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
152
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
153
154
#if LDBL_MAX_EXP > 1024
155
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
156
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
157
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
158
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
159
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
160
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
161
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
162
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
163
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
164
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
165
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
166
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
167
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
168
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
169
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
170
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
171
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
172
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
173
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
174
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
175
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
176
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
177
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
178
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
179
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
180
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
181
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
182
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
183
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
184
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
185
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
186
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
187
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
188
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
189
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
190
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
191
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
192
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
193
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
194
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
195
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
196
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
197
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
198
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
199
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
200
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
201
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
202
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
203
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
204
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
205
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
206
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
207
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
208
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
209
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
210
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
211
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
212
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
213
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
214
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
215
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
216
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
217
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
218
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
219
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
220
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
221
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
222
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
223
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
224
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
225
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
226
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
227
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
228
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
229
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
230
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
231
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
232
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
233
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
234
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
235
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
236
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
237
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
238
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
239
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
240
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
241
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
242
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
243
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
244
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
245
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
246
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
247
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
248
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
249
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
250
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
251
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
252
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
253
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
254
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
255
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
256
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
257
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
258
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
259
#endif
260
};
261
262
static const double PIo2[] = {
263
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
264
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
265
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
266
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
267
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
268
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
269
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
270
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
271
};
272
273
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
274
{
275
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
276
double z,fw,f[20],fq[20],q[20];
277
278
/* initialize jk*/
279
jk = init_jk[prec];
280
jp = jk;
281
282
/* determine jx,jv,q0, note that 3>q0 */
283
jx = nx-1;
284
jv = (e0-3)/24; if(jv<0) jv=0;
285
q0 = e0-24*(jv+1);
286
287
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
288
j = jv-jx; m = jx+jk;
289
for (i=0; i<=m; i++,j++)
290
f[i] = j<0 ? 0.0 : (double)ipio2[j];
291
292
/* compute q[0],q[1],...q[jk] */
293
for (i=0; i<=jk; i++) {
294
for (j=0,fw=0.0; j<=jx; j++)
295
fw += x[j]*f[jx+i-j];
296
q[i] = fw;
297
}
298
299
jz = jk;
300
recompute:
301
/* distill q[] into iq[] reversingly */
302
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
303
fw = (double)(int32_t)(0x1p-24*z);
304
iq[i] = (int32_t)(z - 0x1p24*fw);
305
z = q[j-1]+fw;
306
}
307
308
/* compute n */
309
z = scalbn(z,q0); /* actual value of z */
310
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
311
n = (int32_t)z;
312
z -= (double)n;
313
ih = 0;
314
if (q0 > 0) { /* need iq[jz-1] to determine n */
315
i = iq[jz-1]>>(24-q0); n += i;
316
iq[jz-1] -= i<<(24-q0);
317
ih = iq[jz-1]>>(23-q0);
318
}
319
else if (q0 == 0) ih = iq[jz-1]>>23;
320
else if (z >= 0.5) ih = 2;
321
322
if (ih > 0) { /* q > 0.5 */
323
n += 1; carry = 0;
324
for (i=0; i<jz; i++) { /* compute 1-q */
325
j = iq[i];
326
if (carry == 0) {
327
if (j != 0) {
328
carry = 1;
329
iq[i] = 0x1000000 - j;
330
}
331
} else
332
iq[i] = 0xffffff - j;
333
}
334
if (q0 > 0) { /* rare case: chance is 1 in 12 */
335
switch(q0) {
336
case 1:
337
iq[jz-1] &= 0x7fffff; break;
338
case 2:
339
iq[jz-1] &= 0x3fffff; break;
340
}
341
}
342
if (ih == 2) {
343
z = 1.0 - z;
344
if (carry != 0)
345
z -= scalbn(1.0,q0);
346
}
347
}
348
349
/* check if recomputation is needed */
350
if (z == 0.0) {
351
j = 0;
352
for (i=jz-1; i>=jk; i--) j |= iq[i];
353
if (j == 0) { /* need recomputation */
354
for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
355
356
for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
357
f[jx+i] = (double)ipio2[jv+i];
358
for (j=0,fw=0.0; j<=jx; j++)
359
fw += x[j]*f[jx+i-j];
360
q[i] = fw;
361
}
362
jz += k;
363
goto recompute;
364
}
365
}
366
367
/* chop off zero terms */
368
if (z == 0.0) {
369
jz -= 1;
370
q0 -= 24;
371
while (iq[jz] == 0) {
372
jz--;
373
q0 -= 24;
374
}
375
} else { /* break z into 24-bit if necessary */
376
z = scalbn(z,-q0);
377
if (z >= 0x1p24) {
378
fw = (double)(int32_t)(0x1p-24*z);
379
iq[jz] = (int32_t)(z - 0x1p24*fw);
380
jz += 1;
381
q0 += 24;
382
iq[jz] = (int32_t)fw;
383
} else
384
iq[jz] = (int32_t)z;
385
}
386
387
/* convert integer "bit" chunk to floating-point value */
388
fw = scalbn(1.0,q0);
389
for (i=jz; i>=0; i--) {
390
q[i] = fw*(double)iq[i];
391
fw *= 0x1p-24;
392
}
393
394
/* compute PIo2[0,...,jp]*q[jz,...,0] */
395
for(i=jz; i>=0; i--) {
396
for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
397
fw += PIo2[k]*q[i+k];
398
fq[jz-i] = fw;
399
}
400
401
/* compress fq[] into y[] */
402
switch(prec) {
403
case 0:
404
fw = 0.0;
405
for (i=jz; i>=0; i--)
406
fw += fq[i];
407
y[0] = ih==0 ? fw : -fw;
408
break;
409
case 1:
410
case 2:
411
fw = 0.0;
412
for (i=jz; i>=0; i--)
413
fw += fq[i];
414
// TODO: drop excess precision here once double_t is used
415
fw = (double)fw;
416
y[0] = ih==0 ? fw : -fw;
417
fw = fq[0]-fw;
418
for (i=1; i<=jz; i++)
419
fw += fq[i];
420
y[1] = ih==0 ? fw : -fw;
421
break;
422
case 3: /* painful */
423
for (i=jz; i>0; i--) {
424
fw = fq[i-1]+fq[i];
425
fq[i] += fq[i-1]-fw;
426
fq[i-1] = fw;
427
}
428
for (i=jz; i>1; i--) {
429
fw = fq[i-1]+fq[i];
430
fq[i] += fq[i-1]-fw;
431
fq[i-1] = fw;
432
}
433
for (fw=0.0,i=jz; i>=2; i--)
434
fw += fq[i];
435
if (ih==0) {
436
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
437
} else {
438
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
439
}
440
}
441
return n&7;
442
}
443
444