/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunSoft, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/11/* __sin( x, y, iy)12* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.785413* Input x is assumed to be bounded by ~pi/4 in magnitude.14* Input y is the tail of x.15* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).16*17* Algorithm18* 1. Since sin(-x) = -sin(x), we need only to consider positive x.19* 2. Callers must return sin(-0) = -0 without calling here since our20* odd polynomial is not evaluated in a way that preserves -0.21* Callers may do the optimization sin(x) ~ x for tiny x.22* 3. sin(x) is approximated by a polynomial of degree 13 on23* [0,pi/4]24* 3 1325* sin(x) ~ x + S1*x + ... + S6*x26* where27*28* |sin(x) 2 4 6 8 10 12 | -5829* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 230* | x |31*32* 4. sin(x+y) = sin(x) + sin'(x')*y33* ~ sin(x) + (1-x*x/2)*y34* For better accuracy, let35* 3 2 2 2 236* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))37* then 3 238* sin(x) = x + (S1*x + (x *(r-y/2)+y))39*/4041#include "libm.h"4243static const double44S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */45S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */46S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */47S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */48S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */49S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */5051double __sin(double x, double y, int iy)52{53double_t z,r,v,w;5455z = x*x;56w = z*z;57r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);58v = z*x;59if (iy == 0)60return x + v*(S1 + z*r);61else62return x - ((z*(0.5*y - v*r) - y) - v*S1);63}646566