/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */1/*2* ====================================================3* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.4*5* Permission to use, copy, modify, and distribute this6* software is freely granted, provided that this notice7* is preserved.8* ====================================================9*/10/* __tan( x, y, k )11* kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.785412* Input x is assumed to be bounded by ~pi/4 in magnitude.13* Input y is the tail of x.14* Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.15*16* Algorithm17* 1. Since tan(-x) = -tan(x), we need only to consider positive x.18* 2. Callers must return tan(-0) = -0 without calling here since our19* odd polynomial is not evaluated in a way that preserves -0.20* Callers may do the optimization tan(x) ~ x for tiny x.21* 3. tan(x) is approximated by a odd polynomial of degree 27 on22* [0,0.67434]23* 3 2724* tan(x) ~ x + T1*x + ... + T13*x25* where26*27* |tan(x) 2 4 26 | -59.228* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 229* | x |30*31* Note: tan(x+y) = tan(x) + tan'(x)*y32* ~ tan(x) + (1+x*x)*y33* Therefore, for better accuracy in computing tan(x+y), let34* 3 2 2 2 235* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))36* then37* 3 238* tan(x+y) = x + (T1*x + (x *(r+y)+y))39*40* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then41* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))42* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))43*/4445#include "libm.h"4647static const double T[] = {483.33333333333334091986e-01, /* 3FD55555, 55555563 */491.33333333333201242699e-01, /* 3FC11111, 1110FE7A */505.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */512.18694882948595424599e-02, /* 3F9664F4, 8406D637 */528.86323982359930005737e-03, /* 3F8226E3, E96E8493 */533.59207910759131235356e-03, /* 3F6D6D22, C9560328 */541.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */555.88041240820264096874e-04, /* 3F4344D8, F2F26501 */562.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */577.81794442939557092300e-05, /* 3F147E88, A03792A6 */587.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */59-1.85586374855275456654e-05, /* BEF375CB, DB605373 */602.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */61},62pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */63pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */6465double __tan(double x, double y, int odd)66{67double_t z, r, v, w, s, a;68double w0, a0;69uint32_t hx;70int big, sign;7172GET_HIGH_WORD(hx,x);73big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */74if (big) {75sign = hx>>31;76if (sign) {77x = -x;78y = -y;79}80x = (pio4 - x) + (pio4lo - y);81y = 0.0;82}83z = x * x;84w = z * z;85/*86* Break x^5*(T[1]+x^2*T[2]+...) into87* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +88* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))89*/90r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));91v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));92s = z * x;93r = y + z*(s*(r + v) + y) + s*T[0];94w = x + r;95if (big) {96s = 1 - 2*odd;97v = s - 2.0 * (x + (r - w*w/(w + s)));98return sign ? -v : v;99}100if (!odd)101return w;102/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */103w0 = w;104SET_LOW_WORD(w0, 0);105v = r - (w0 - x); /* w0+v = r+x */106a0 = a = -1.0 / w;107SET_LOW_WORD(a0, 0);108return a0 + a*(1.0 + a0*w0 + a0*v);109}110111112