Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/musl/src/math/asin.c
4397 views
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunSoft, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
/* asin(x)
13
* Method :
14
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
15
* we approximate asin(x) on [0,0.5] by
16
* asin(x) = x + x*x^2*R(x^2)
17
* where
18
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
19
* and its remez error is bounded by
20
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
21
*
22
* For x in [0.5,1]
23
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
24
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
25
* then for x>0.98
26
* asin(x) = pi/2 - 2*(s+s*z*R(z))
27
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
28
* For x<=0.98, let pio4_hi = pio2_hi/2, then
29
* f = hi part of s;
30
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
31
* and
32
* asin(x) = pi/2 - 2*(s+s*z*R(z))
33
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
34
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
35
*
36
* Special cases:
37
* if x is NaN, return x itself;
38
* if |x|>1, return NaN with invalid signal.
39
*
40
*/
41
42
#include "libm.h"
43
44
static const double
45
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
46
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
47
/* coefficients for R(x^2) */
48
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
49
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
50
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
51
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
52
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
53
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
54
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
55
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
56
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
57
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
58
59
static double R(double z)
60
{
61
double_t p, q;
62
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
63
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
64
return p/q;
65
}
66
67
double __cdecl asin(double x)
68
{
69
double z,r,s;
70
uint32_t hx,ix;
71
72
GET_HIGH_WORD(hx, x);
73
ix = hx & 0x7fffffff;
74
/* |x| >= 1 or nan */
75
if (ix >= 0x3ff00000) {
76
uint32_t lx;
77
GET_LOW_WORD(lx, x);
78
if ((ix-0x3ff00000 | lx) == 0)
79
/* asin(1) = +-pi/2 with inexact */
80
return x*pio2_hi + 0x1p-120f;
81
return math_error(_DOMAIN, "asin", x, 0, 0 / (x - x));
82
}
83
/* |x| < 0.5 */
84
if (ix < 0x3fe00000) {
85
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
86
if (ix < 0x3e500000 && ix >= 0x00100000)
87
return x;
88
return x + x*R(x*x);
89
}
90
/* 1 > |x| >= 0.5 */
91
z = (1 - fabs(x))*0.5;
92
s = sqrt(z);
93
r = R(z);
94
if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
95
x = pio2_hi-(2*(s+s*r)-pio2_lo);
96
} else {
97
double f,c;
98
/* f+c = sqrt(z) */
99
f = s;
100
SET_LOW_WORD(f,0);
101
c = (z-f*f)/(s+f);
102
x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
103
}
104
if (hx >> 31)
105
return -x;
106
return x;
107
}
108
109