Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/musl/src/math/atan.c
4397 views
1
/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
/* atan(x)
13
* Method
14
* 1. Reduce x to positive by atan(x) = -atan(-x).
15
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
16
* is further reduced to one of the following intervals and the
17
* arctangent of t is evaluated by the corresponding formula:
18
*
19
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
20
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
21
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
22
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
23
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
24
*
25
* Constants:
26
* The hexadecimal values are the intended ones for the following
27
* constants. The decimal values may be used, provided that the
28
* compiler will convert from decimal to binary accurately enough
29
* to produce the hexadecimal values shown.
30
*/
31
32
33
#include "libm.h"
34
35
static const double atanhi[] = {
36
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
37
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
38
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
39
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
40
};
41
42
static const double atanlo[] = {
43
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
44
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
45
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
46
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
47
};
48
49
static const double aT[] = {
50
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
51
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
52
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
53
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
54
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
55
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
56
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
57
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
58
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
59
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
60
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
61
};
62
63
double __cdecl atan(double x)
64
{
65
double_t w,s1,s2,z;
66
uint32_t ix,sign;
67
int id;
68
69
GET_HIGH_WORD(ix, x);
70
sign = ix >> 31;
71
ix &= 0x7fffffff;
72
if (ix >= 0x44100000) { /* if |x| >= 2^66 */
73
if (isnan(x))
74
return x;
75
z = atanhi[3] + 0x1p-120f;
76
return sign ? -z : z;
77
}
78
if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
79
if (ix < 0x3e400000) { /* |x| < 2^-27 */
80
if (ix < 0x00100000)
81
/* raise underflow for subnormal x */
82
FORCE_EVAL((float)x);
83
return x;
84
}
85
id = -1;
86
} else {
87
x = fabs(x);
88
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
89
if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
90
id = 0;
91
x = (2.0*x-1.0)/(2.0+x);
92
} else { /* 11/16 <= |x| < 19/16 */
93
id = 1;
94
x = (x-1.0)/(x+1.0);
95
}
96
} else {
97
if (ix < 0x40038000) { /* |x| < 2.4375 */
98
id = 2;
99
x = (x-1.5)/(1.0+1.5*x);
100
} else { /* 2.4375 <= |x| < 2^66 */
101
id = 3;
102
x = -1.0/x;
103
}
104
}
105
}
106
/* end of argument reduction */
107
z = x*x;
108
w = z*z;
109
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
110
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
111
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
112
if (id < 0)
113
return x - x*(s1+s2);
114
z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
115
return sign ? -z : z;
116
}
117
118