/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */1/*2* ====================================================3* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.4*5* Developed at SunPro, a Sun Microsystems, Inc. business.6* Permission to use, copy, modify, and distribute this7* software is freely granted, provided that this notice8* is preserved.9* ====================================================10*/11/* double erf(double x)12* double erfc(double x)13* x14* 2 |\15* erf(x) = --------- | exp(-t*t)dt16* sqrt(pi) \|17* 018*19* erfc(x) = 1-erf(x)20* Note that21* erf(-x) = -erf(x)22* erfc(-x) = 2 - erfc(x)23*24* Method:25* 1. For |x| in [0, 0.84375]26* erf(x) = x + x*R(x^2)27* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]28* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]29* where R = P/Q where P is an odd poly of degree 8 and30* Q is an odd poly of degree 10.31* -57.9032* | R - (erf(x)-x)/x | <= 233*34*35* Remark. The formula is derived by noting36* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)37* and that38* 2/sqrt(pi) = 1.12837916709551257389615890312154517168839* is close to one. The interval is chosen because the fix40* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is41* near 0.6174), and by some experiment, 0.84375 is chosen to42* guarantee the error is less than one ulp for erf.43*44* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and45* c = 0.84506291151 rounded to single (24 bits)46* erf(x) = sign(x) * (c + P1(s)/Q1(s))47* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 048* 1+(c+P1(s)/Q1(s)) if x < 049* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.0650* Remark: here we use the taylor series expansion at x=1.51* erf(1+s) = erf(1) + s*Poly(s)52* = 0.845.. + P1(s)/Q1(s)53* That is, we use rational approximation to approximate54* erf(1+s) - (c = (single)0.84506291151)55* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]56* where57* P1(s) = degree 6 poly in s58* Q1(s) = degree 6 poly in s59*60* 3. For x in [1.25,1/0.35(~2.857143)],61* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)62* erf(x) = 1 - erfc(x)63* where64* R1(z) = degree 7 poly in z, (z=1/x^2)65* S1(z) = degree 8 poly in z66*67* 4. For x in [1/0.35,28]68* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 069* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<070* = 2.0 - tiny (if x <= -6)71* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else72* erf(x) = sign(x)*(1.0 - tiny)73* where74* R2(z) = degree 6 poly in z, (z=1/x^2)75* S2(z) = degree 7 poly in z76*77* Note1:78* To compute exp(-x*x-0.5625+R/S), let s be a single79* precision number and s := x; then80* -x*x = -s*s + (s-x)*(s+x)81* exp(-x*x-0.5626+R/S) =82* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);83* Note2:84* Here 4 and 5 make use of the asymptotic series85* exp(-x*x)86* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )87* x*sqrt(pi)88* We use rational approximation to approximate89* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.562590* Here is the error bound for R1/S1 and R2/S291* |R1/S1 - f(x)| < 2**(-62.57)92* |R2/S2 - f(x)| < 2**(-61.52)93*94* 5. For inf > x >= 2895* erf(x) = sign(x) *(1 - tiny) (raise inexact)96* erfc(x) = tiny*tiny (raise underflow) if x > 097* = 2 - tiny if x<098*99* 7. Special case:100* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,101* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,102* erfc/erf(NaN) is NaN103*/104105#include "libm.h"106107static const double108erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */109/*110* Coefficients for approximation to erf on [0,0.84375]111*/112efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */113pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */114pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */115pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */116pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */117pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */118qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */119qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */120qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */121qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */122qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */123/*124* Coefficients for approximation to erf in [0.84375,1.25]125*/126pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */127pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */128pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */129pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */130pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */131pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */132pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */133qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */134qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */135qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */136qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */137qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */138qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */139/*140* Coefficients for approximation to erfc in [1.25,1/0.35]141*/142ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */143ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */144ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */145ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */146ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */147ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */148ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */149ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */150sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */151sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */152sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */153sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */154sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */155sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */156sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */157sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */158/*159* Coefficients for approximation to erfc in [1/.35,28]160*/161rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */162rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */163rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */164rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */165rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */166rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */167rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */168sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */169sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */170sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */171sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */172sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */173sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */174sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */175176static double erfc1(double x)177{178double_t s,P,Q;179180s = fabs(x) - 1;181P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));182Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));183return 1 - erx - P/Q;184}185186static double erfc2(uint32_t ix, double x)187{188double_t s,R,S;189double z;190191if (ix < 0x3ff40000) /* |x| < 1.25 */192return erfc1(x);193194x = fabs(x);195s = 1/(x*x);196if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */197R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(198ra5+s*(ra6+s*ra7))))));199S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(200sa5+s*(sa6+s*(sa7+s*sa8)))))));201} else { /* |x| > 1/.35 */202R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(203rb5+s*rb6)))));204S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(205sb5+s*(sb6+s*sb7))))));206}207z = x;208SET_LOW_WORD(z,0);209return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;210}211212double __cdecl erf(double x)213{214double r,s,z,y;215uint32_t ix;216int sign;217218GET_HIGH_WORD(ix, x);219sign = ix>>31;220ix &= 0x7fffffff;221if (ix >= 0x7ff00000) {222/* erf(nan)=nan, erf(+-inf)=+-1 */223return 1-2*sign + 1/x;224}225if (ix < 0x3feb0000) { /* |x| < 0.84375 */226if (ix < 0x3e300000) { /* |x| < 2**-28 */227/* avoid underflow */228return 0.125*(8*x + efx8*x);229}230z = x*x;231r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));232s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));233y = r/s;234return x + x*y;235}236if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */237y = 1 - erfc2(ix,x);238else239y = 1 - 0x1p-1022;240return sign ? -y : y;241}242243double __cdecl erfc(double x)244{245double r,s,z,y;246uint32_t ix;247int sign;248249GET_HIGH_WORD(ix, x);250sign = ix>>31;251ix &= 0x7fffffff;252if (ix >= 0x7ff00000) {253/* erfc(nan)=nan, erfc(+-inf)=0,2 */254return 2*sign + 1/x;255}256if (ix < 0x3feb0000) { /* |x| < 0.84375 */257if (ix < 0x3c700000) /* |x| < 2**-56 */258return 1.0 - x;259z = x*x;260r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));261s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));262y = r/s;263if (sign || ix < 0x3fd00000) { /* x < 1/4 */264return 1.0 - (x+x*y);265}266return 0.5 - (x - 0.5 + x*y);267}268if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */269return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);270}271if (sign)272return 2 - DBL_MIN;273errno = ERANGE;274return fp_barrier(DBL_MIN) * DBL_MIN;275}276277278