Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/musl/src/math/erf.c
4397 views
1
/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
2
/*
3
* ====================================================
4
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
*
6
* Developed at SunPro, a Sun Microsystems, Inc. business.
7
* Permission to use, copy, modify, and distribute this
8
* software is freely granted, provided that this notice
9
* is preserved.
10
* ====================================================
11
*/
12
/* double erf(double x)
13
* double erfc(double x)
14
* x
15
* 2 |\
16
* erf(x) = --------- | exp(-t*t)dt
17
* sqrt(pi) \|
18
* 0
19
*
20
* erfc(x) = 1-erf(x)
21
* Note that
22
* erf(-x) = -erf(x)
23
* erfc(-x) = 2 - erfc(x)
24
*
25
* Method:
26
* 1. For |x| in [0, 0.84375]
27
* erf(x) = x + x*R(x^2)
28
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
29
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
30
* where R = P/Q where P is an odd poly of degree 8 and
31
* Q is an odd poly of degree 10.
32
* -57.90
33
* | R - (erf(x)-x)/x | <= 2
34
*
35
*
36
* Remark. The formula is derived by noting
37
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
38
* and that
39
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
40
* is close to one. The interval is chosen because the fix
41
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
42
* near 0.6174), and by some experiment, 0.84375 is chosen to
43
* guarantee the error is less than one ulp for erf.
44
*
45
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
46
* c = 0.84506291151 rounded to single (24 bits)
47
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
48
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
49
* 1+(c+P1(s)/Q1(s)) if x < 0
50
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
51
* Remark: here we use the taylor series expansion at x=1.
52
* erf(1+s) = erf(1) + s*Poly(s)
53
* = 0.845.. + P1(s)/Q1(s)
54
* That is, we use rational approximation to approximate
55
* erf(1+s) - (c = (single)0.84506291151)
56
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
57
* where
58
* P1(s) = degree 6 poly in s
59
* Q1(s) = degree 6 poly in s
60
*
61
* 3. For x in [1.25,1/0.35(~2.857143)],
62
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
63
* erf(x) = 1 - erfc(x)
64
* where
65
* R1(z) = degree 7 poly in z, (z=1/x^2)
66
* S1(z) = degree 8 poly in z
67
*
68
* 4. For x in [1/0.35,28]
69
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
70
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
71
* = 2.0 - tiny (if x <= -6)
72
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
73
* erf(x) = sign(x)*(1.0 - tiny)
74
* where
75
* R2(z) = degree 6 poly in z, (z=1/x^2)
76
* S2(z) = degree 7 poly in z
77
*
78
* Note1:
79
* To compute exp(-x*x-0.5625+R/S), let s be a single
80
* precision number and s := x; then
81
* -x*x = -s*s + (s-x)*(s+x)
82
* exp(-x*x-0.5626+R/S) =
83
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
84
* Note2:
85
* Here 4 and 5 make use of the asymptotic series
86
* exp(-x*x)
87
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
88
* x*sqrt(pi)
89
* We use rational approximation to approximate
90
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
91
* Here is the error bound for R1/S1 and R2/S2
92
* |R1/S1 - f(x)| < 2**(-62.57)
93
* |R2/S2 - f(x)| < 2**(-61.52)
94
*
95
* 5. For inf > x >= 28
96
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
97
* erfc(x) = tiny*tiny (raise underflow) if x > 0
98
* = 2 - tiny if x<0
99
*
100
* 7. Special case:
101
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
102
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
103
* erfc/erf(NaN) is NaN
104
*/
105
106
#include "libm.h"
107
108
static const double
109
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
110
/*
111
* Coefficients for approximation to erf on [0,0.84375]
112
*/
113
efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
114
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
115
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
116
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
117
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
118
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
119
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
120
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
121
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
122
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
123
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
124
/*
125
* Coefficients for approximation to erf in [0.84375,1.25]
126
*/
127
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
128
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
129
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
130
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
131
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
132
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
133
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
134
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
135
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
136
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
137
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
138
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
139
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
140
/*
141
* Coefficients for approximation to erfc in [1.25,1/0.35]
142
*/
143
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
144
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
145
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
146
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
147
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
148
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
149
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
150
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
151
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
152
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
153
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
154
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
155
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
156
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
157
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
158
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
159
/*
160
* Coefficients for approximation to erfc in [1/.35,28]
161
*/
162
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
163
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
164
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
165
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
166
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
167
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
168
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
169
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
170
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
171
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
172
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
173
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
174
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
175
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
176
177
static double erfc1(double x)
178
{
179
double_t s,P,Q;
180
181
s = fabs(x) - 1;
182
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
183
Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
184
return 1 - erx - P/Q;
185
}
186
187
static double erfc2(uint32_t ix, double x)
188
{
189
double_t s,R,S;
190
double z;
191
192
if (ix < 0x3ff40000) /* |x| < 1.25 */
193
return erfc1(x);
194
195
x = fabs(x);
196
s = 1/(x*x);
197
if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
198
R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
199
ra5+s*(ra6+s*ra7))))));
200
S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
201
sa5+s*(sa6+s*(sa7+s*sa8)))))));
202
} else { /* |x| > 1/.35 */
203
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
204
rb5+s*rb6)))));
205
S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
206
sb5+s*(sb6+s*sb7))))));
207
}
208
z = x;
209
SET_LOW_WORD(z,0);
210
return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
211
}
212
213
double __cdecl erf(double x)
214
{
215
double r,s,z,y;
216
uint32_t ix;
217
int sign;
218
219
GET_HIGH_WORD(ix, x);
220
sign = ix>>31;
221
ix &= 0x7fffffff;
222
if (ix >= 0x7ff00000) {
223
/* erf(nan)=nan, erf(+-inf)=+-1 */
224
return 1-2*sign + 1/x;
225
}
226
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
227
if (ix < 0x3e300000) { /* |x| < 2**-28 */
228
/* avoid underflow */
229
return 0.125*(8*x + efx8*x);
230
}
231
z = x*x;
232
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
233
s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
234
y = r/s;
235
return x + x*y;
236
}
237
if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
238
y = 1 - erfc2(ix,x);
239
else
240
y = 1 - 0x1p-1022;
241
return sign ? -y : y;
242
}
243
244
double __cdecl erfc(double x)
245
{
246
double r,s,z,y;
247
uint32_t ix;
248
int sign;
249
250
GET_HIGH_WORD(ix, x);
251
sign = ix>>31;
252
ix &= 0x7fffffff;
253
if (ix >= 0x7ff00000) {
254
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
255
return 2*sign + 1/x;
256
}
257
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
258
if (ix < 0x3c700000) /* |x| < 2**-56 */
259
return 1.0 - x;
260
z = x*x;
261
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
262
s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
263
y = r/s;
264
if (sign || ix < 0x3fd00000) { /* x < 1/4 */
265
return 1.0 - (x+x*y);
266
}
267
return 0.5 - (x - 0.5 + x*y);
268
}
269
if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
270
return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
271
}
272
if (sign)
273
return 2 - DBL_MIN;
274
errno = ERANGE;
275
return fp_barrier(DBL_MIN) * DBL_MIN;
276
}
277
278