Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/tiff/libtiff/tif_lzw.c
8841 views
1
/*
2
* Copyright (c) 1988-1997 Sam Leffler
3
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
4
* Copyright (c) 2022 Even Rouault
5
*
6
* Permission to use, copy, modify, distribute, and sell this software and
7
* its documentation for any purpose is hereby granted without fee, provided
8
* that (i) the above copyright notices and this permission notice appear in
9
* all copies of the software and related documentation, and (ii) the names of
10
* Sam Leffler and Silicon Graphics may not be used in any advertising or
11
* publicity relating to the software without the specific, prior written
12
* permission of Sam Leffler and Silicon Graphics.
13
*
14
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
15
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
16
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
17
*
18
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
19
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
20
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
21
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
22
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
23
* OF THIS SOFTWARE.
24
*/
25
26
#include "tiffiop.h"
27
#ifdef LZW_SUPPORT
28
/*
29
* TIFF Library.
30
* Rev 5.0 Lempel-Ziv & Welch Compression Support
31
*
32
* This code is derived from the compress program whose code is
33
* derived from software contributed to Berkeley by James A. Woods,
34
* derived from original work by Spencer Thomas and Joseph Orost.
35
*
36
* The original Berkeley copyright notice appears below in its entirety.
37
*/
38
#include "tif_predict.h"
39
40
#include <stdbool.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
44
/* Select the plausible largest natural integer type for the architecture */
45
#define SIZEOF_WORDTYPE SIZEOF_SIZE_T
46
typedef size_t WordType;
47
48
/*
49
* NB: The 5.0 spec describes a different algorithm than Aldus
50
* implements. Specifically, Aldus does code length transitions
51
* one code earlier than should be done (for real LZW).
52
* Earlier versions of this library implemented the correct
53
* LZW algorithm, but emitted codes in a bit order opposite
54
* to the TIFF spec. Thus, to maintain compatibility w/ Aldus
55
* we interpret MSB-LSB ordered codes to be images written w/
56
* old versions of this library, but otherwise adhere to the
57
* Aldus "off by one" algorithm.
58
*
59
* Future revisions to the TIFF spec are expected to "clarify this issue".
60
*/
61
#define LZW_COMPAT /* include backwards compatibility code */
62
63
#define MAXCODE(n) ((1L << (n)) - 1)
64
/*
65
* The TIFF spec specifies that encoded bit
66
* strings range from 9 to 12 bits.
67
*/
68
#define BITS_MIN 9 /* start with 9 bits */
69
#define BITS_MAX 12 /* max of 12 bit strings */
70
/* predefined codes */
71
#define CODE_CLEAR 256 /* code to clear string table */
72
#define CODE_EOI 257 /* end-of-information code */
73
#define CODE_FIRST 258 /* first free code entry */
74
#define CODE_MAX MAXCODE(BITS_MAX)
75
#define HSIZE 9001L /* 91% occupancy */
76
#define HSHIFT (13 - 8)
77
#ifdef LZW_COMPAT
78
/* NB: +1024 is for compatibility with old files */
79
#define CSIZE (MAXCODE(BITS_MAX) + 1024L)
80
#else
81
#define CSIZE (MAXCODE(BITS_MAX) + 1L)
82
#endif
83
84
/*
85
* State block for each open TIFF file using LZW
86
* compression/decompression. Note that the predictor
87
* state block must be first in this data structure.
88
*/
89
typedef struct
90
{
91
TIFFPredictorState predict; /* predictor super class */
92
93
unsigned short nbits; /* # of bits/code */
94
unsigned short maxcode; /* maximum code for lzw_nbits */
95
unsigned short free_ent; /* next free entry in hash table */
96
WordType nextdata; /* next bits of i/o */
97
long nextbits; /* # of valid bits in lzw_nextdata */
98
99
int rw_mode; /* preserve rw_mode from init */
100
} LZWBaseState;
101
102
#define lzw_nbits base.nbits
103
#define lzw_maxcode base.maxcode
104
#define lzw_free_ent base.free_ent
105
#define lzw_nextdata base.nextdata
106
#define lzw_nextbits base.nextbits
107
108
/*
109
* Encoding-specific state.
110
*/
111
typedef uint16_t hcode_t; /* codes fit in 16 bits */
112
typedef struct
113
{
114
long hash;
115
hcode_t code;
116
} hash_t;
117
118
/*
119
* Decoding-specific state.
120
*/
121
typedef struct code_ent
122
{
123
struct code_ent *next;
124
unsigned short length; /* string len, including this token */
125
/* firstchar should be placed immediately before value in this structure */
126
unsigned char firstchar; /* first token of string */
127
unsigned char value; /* data value */
128
bool repeated;
129
} code_t;
130
131
typedef int (*decodeFunc)(TIFF *, uint8_t *, tmsize_t, uint16_t);
132
133
typedef struct
134
{
135
LZWBaseState base;
136
137
/* Decoding specific data */
138
long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */
139
tmsize_t dec_restart; /* restart count */
140
uint64_t dec_bitsleft; /* available bits in raw data */
141
tmsize_t old_tif_rawcc; /* value of tif_rawcc at the end of the previous
142
TIFLZWDecode() call */
143
decodeFunc dec_decode; /* regular or backwards compatible */
144
code_t *dec_codep; /* current recognized code */
145
code_t *dec_oldcodep; /* previously recognized code */
146
code_t *dec_free_entp; /* next free entry */
147
code_t *dec_maxcodep; /* max available entry */
148
code_t *dec_codetab; /* kept separate for small machines */
149
int read_error; /* whether a read error has occurred, and which should cause
150
further reads in the same strip/tile to be aborted */
151
152
/* Encoding specific data */
153
int enc_oldcode; /* last code encountered */
154
tmsize_t enc_checkpoint; /* point at which to clear table */
155
#define CHECK_GAP 10000 /* enc_ratio check interval */
156
tmsize_t enc_ratio; /* current compression ratio */
157
tmsize_t enc_incount; /* (input) data bytes encoded */
158
tmsize_t enc_outcount; /* encoded (output) bytes */
159
uint8_t *enc_rawlimit; /* bound on tif_rawdata buffer */
160
hash_t *enc_hashtab; /* kept separate for small machines */
161
} LZWCodecState;
162
163
#define LZWState(tif) ((LZWBaseState *)(tif)->tif_data)
164
#define LZWDecoderState(tif) ((LZWCodecState *)LZWState(tif))
165
#define LZWEncoderState(tif) ((LZWCodecState *)LZWState(tif))
166
167
static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s);
168
#ifdef LZW_COMPAT
169
static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s);
170
#endif
171
172
/*
173
* LZW Decoder.
174
*/
175
176
static int LZWFixupTags(TIFF *tif)
177
{
178
(void)tif;
179
return (1);
180
}
181
182
static int LZWSetupDecode(TIFF *tif)
183
{
184
static const char module[] = "LZWSetupDecode";
185
LZWCodecState *sp = LZWDecoderState(tif);
186
int code;
187
188
if (sp == NULL)
189
{
190
/*
191
* Allocate state block so tag methods have storage to record
192
* values.
193
*/
194
tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState));
195
if (tif->tif_data == NULL)
196
{
197
TIFFErrorExtR(tif, module, "No space for LZW state block");
198
return (0);
199
}
200
201
sp = LZWDecoderState(tif);
202
sp->dec_codetab = NULL;
203
sp->dec_decode = NULL;
204
205
/*
206
* Setup predictor setup.
207
*/
208
(void)TIFFPredictorInit(tif);
209
}
210
211
if (sp->dec_codetab == NULL)
212
{
213
sp->dec_codetab = (code_t *)_TIFFmallocExt(tif, CSIZE * sizeof(code_t));
214
if (sp->dec_codetab == NULL)
215
{
216
TIFFErrorExtR(tif, module, "No space for LZW code table");
217
return (0);
218
}
219
/*
220
* Pre-load the table.
221
*/
222
code = 255;
223
do
224
{
225
sp->dec_codetab[code].firstchar = (unsigned char)code;
226
sp->dec_codetab[code].value = (unsigned char)code;
227
sp->dec_codetab[code].repeated = true;
228
sp->dec_codetab[code].length = 1;
229
sp->dec_codetab[code].next = NULL;
230
} while (code--);
231
/*
232
* Zero-out the unused entries */
233
/* Silence false positive */
234
/* coverity[overrun-buffer-arg] */
235
memset(&sp->dec_codetab[CODE_CLEAR], 0,
236
(CODE_FIRST - CODE_CLEAR) * sizeof(code_t));
237
}
238
return (1);
239
}
240
241
/*
242
* Setup state for decoding a strip.
243
*/
244
static int LZWPreDecode(TIFF *tif, uint16_t s)
245
{
246
static const char module[] = "LZWPreDecode";
247
LZWCodecState *sp = LZWDecoderState(tif);
248
249
(void)s;
250
assert(sp != NULL);
251
if (sp->dec_codetab == NULL)
252
{
253
tif->tif_setupdecode(tif);
254
if (sp->dec_codetab == NULL)
255
return (0);
256
}
257
258
/*
259
* Check for old bit-reversed codes.
260
*/
261
if (tif->tif_rawcc >= 2 && tif->tif_rawdata[0] == 0 &&
262
(tif->tif_rawdata[1] & 0x1))
263
{
264
#ifdef LZW_COMPAT
265
if (!sp->dec_decode)
266
{
267
TIFFWarningExtR(tif, module, "Old-style LZW codes, convert file");
268
/*
269
* Override default decoding methods with
270
* ones that deal with the old coding.
271
* Otherwise the predictor versions set
272
* above will call the compatibility routines
273
* through the dec_decode method.
274
*/
275
tif->tif_decoderow = LZWDecodeCompat;
276
tif->tif_decodestrip = LZWDecodeCompat;
277
tif->tif_decodetile = LZWDecodeCompat;
278
/*
279
* If doing horizontal differencing, must
280
* re-setup the predictor logic since we
281
* switched the basic decoder methods...
282
*/
283
(*tif->tif_setupdecode)(tif);
284
sp->dec_decode = LZWDecodeCompat;
285
}
286
sp->lzw_maxcode = MAXCODE(BITS_MIN);
287
#else /* !LZW_COMPAT */
288
if (!sp->dec_decode)
289
{
290
TIFFErrorExtR(tif, module, "Old-style LZW codes not supported");
291
sp->dec_decode = LZWDecode;
292
}
293
return (0);
294
#endif /* !LZW_COMPAT */
295
}
296
else
297
{
298
sp->lzw_maxcode = MAXCODE(BITS_MIN) - 1;
299
sp->dec_decode = LZWDecode;
300
}
301
sp->lzw_nbits = BITS_MIN;
302
sp->lzw_nextbits = 0;
303
sp->lzw_nextdata = 0;
304
305
sp->dec_restart = 0;
306
sp->dec_nbitsmask = MAXCODE(BITS_MIN);
307
sp->dec_bitsleft = 0;
308
sp->old_tif_rawcc = 0;
309
sp->dec_free_entp = sp->dec_codetab - 1; // + CODE_FIRST;
310
/*
311
* Zero entries that are not yet filled in. We do
312
* this to guard against bogus input data that causes
313
* us to index into undefined entries. If you can
314
* come up with a way to safely bounds-check input codes
315
* while decoding then you can remove this operation.
316
*/
317
sp->dec_oldcodep = &sp->dec_codetab[0];
318
sp->dec_maxcodep = &sp->dec_codetab[sp->dec_nbitsmask - 1];
319
sp->read_error = 0;
320
return (1);
321
}
322
323
/*
324
* Decode a "hunk of data".
325
*/
326
327
/* Get the next 32 or 64-bit from the input data */
328
#ifdef WORDS_BIGENDIAN
329
#define GetNextData(nextdata, bp) memcpy(&nextdata, bp, sizeof(nextdata))
330
#elif SIZEOF_WORDTYPE == 8
331
#if defined(_M_X64)
332
#define GetNextData(nextdata, bp) nextdata = _byteswap_uint64(*(uint64_t *)(bp))
333
#elif defined(__GNUC__)
334
#define GetNextData(nextdata, bp) \
335
memcpy(&nextdata, bp, sizeof(nextdata)); \
336
nextdata = __builtin_bswap64(nextdata)
337
#else
338
#define GetNextData(nextdata, bp) \
339
nextdata = (((uint64_t)bp[0]) << 56) | (((uint64_t)bp[1]) << 48) | \
340
(((uint64_t)bp[2]) << 40) | (((uint64_t)bp[3]) << 32) | \
341
(((uint64_t)bp[4]) << 24) | (((uint64_t)bp[5]) << 16) | \
342
(((uint64_t)bp[6]) << 8) | (((uint64_t)bp[7]))
343
#endif
344
#elif SIZEOF_WORDTYPE == 4
345
#if defined(_M_X86)
346
#define GetNextData(nextdata, bp) \
347
nextdata = _byteswap_ulong(*(unsigned long *)(bp))
348
#elif defined(__GNUC__)
349
#define GetNextData(nextdata, bp) \
350
memcpy(&nextdata, bp, sizeof(nextdata)); \
351
nextdata = __builtin_bswap32(nextdata)
352
#else
353
#define GetNextData(nextdata, bp) \
354
nextdata = (((uint32_t)bp[0]) << 24) | (((uint32_t)bp[1]) << 16) | \
355
(((uint32_t)bp[2]) << 8) | (((uint32_t)bp[3]))
356
#endif
357
#else
358
#error "Unhandled SIZEOF_WORDTYPE"
359
#endif
360
361
#define GetNextCodeLZW() \
362
do \
363
{ \
364
nextbits -= nbits; \
365
if (nextbits < 0) \
366
{ \
367
if (dec_bitsleft >= 8 * SIZEOF_WORDTYPE) \
368
{ \
369
unsigned codetmp = (unsigned)(nextdata << (-nextbits)); \
370
GetNextData(nextdata, bp); \
371
bp += SIZEOF_WORDTYPE; \
372
nextbits += 8 * SIZEOF_WORDTYPE; \
373
dec_bitsleft -= 8 * SIZEOF_WORDTYPE; \
374
code = (WordType)((codetmp | (nextdata >> nextbits)) & \
375
nbitsmask); \
376
break; \
377
} \
378
else \
379
{ \
380
if (dec_bitsleft < 8) \
381
{ \
382
goto no_eoi; \
383
} \
384
nextdata = (nextdata << 8) | *(bp)++; \
385
nextbits += 8; \
386
dec_bitsleft -= 8; \
387
if (nextbits < 0) \
388
{ \
389
if (dec_bitsleft < 8) \
390
{ \
391
goto no_eoi; \
392
} \
393
nextdata = (nextdata << 8) | *(bp)++; \
394
nextbits += 8; \
395
dec_bitsleft -= 8; \
396
} \
397
} \
398
} \
399
code = (WordType)((nextdata >> nextbits) & nbitsmask); \
400
} while (0)
401
402
static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s)
403
{
404
static const char module[] = "LZWDecode";
405
LZWCodecState *sp = LZWDecoderState(tif);
406
uint8_t *op = (uint8_t *)op0;
407
tmsize_t occ = occ0;
408
uint8_t *bp;
409
long nbits, nextbits, nbitsmask;
410
WordType nextdata;
411
code_t *free_entp, *maxcodep, *oldcodep;
412
413
(void)s;
414
assert(sp != NULL);
415
assert(sp->dec_codetab != NULL);
416
417
if (sp->read_error)
418
{
419
memset(op, 0, (size_t)occ);
420
TIFFErrorExtR(tif, module,
421
"LZWDecode: Scanline %" PRIu32 " cannot be read due to "
422
"previous error",
423
tif->tif_row);
424
return 0;
425
}
426
427
/*
428
* Restart interrupted output operation.
429
*/
430
if (sp->dec_restart)
431
{
432
tmsize_t residue;
433
434
code_t *codep = sp->dec_codep;
435
residue = codep->length - sp->dec_restart;
436
if (residue > occ)
437
{
438
/*
439
* Residue from previous decode is sufficient
440
* to satisfy decode request. Skip to the
441
* start of the decoded string, place decoded
442
* values in the output buffer, and return.
443
*/
444
sp->dec_restart += occ;
445
do
446
{
447
codep = codep->next;
448
} while (--residue > occ && codep);
449
if (codep)
450
{
451
uint8_t *tp = op + occ;
452
do
453
{
454
*--tp = codep->value;
455
codep = codep->next;
456
} while (--occ && codep);
457
}
458
return (1);
459
}
460
/*
461
* Residue satisfies only part of the decode request.
462
*/
463
op += residue;
464
occ -= residue;
465
uint8_t *tp = op;
466
do
467
{
468
*--tp = codep->value;
469
codep = codep->next;
470
} while (--residue && codep);
471
sp->dec_restart = 0;
472
}
473
474
bp = (uint8_t *)tif->tif_rawcp;
475
sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3);
476
uint64_t dec_bitsleft = sp->dec_bitsleft;
477
nbits = sp->lzw_nbits;
478
nextdata = sp->lzw_nextdata;
479
nextbits = sp->lzw_nextbits;
480
nbitsmask = sp->dec_nbitsmask;
481
oldcodep = sp->dec_oldcodep;
482
free_entp = sp->dec_free_entp;
483
maxcodep = sp->dec_maxcodep;
484
code_t *const dec_codetab = sp->dec_codetab;
485
code_t *codep;
486
487
if (occ == 0)
488
{
489
goto after_loop;
490
}
491
492
begin:
493
{
494
WordType code;
495
GetNextCodeLZW();
496
codep = dec_codetab + code;
497
if (code >= CODE_FIRST)
498
goto code_above_or_equal_to_258;
499
if (code < 256)
500
goto code_below_256;
501
if (code == CODE_EOI)
502
goto after_loop;
503
goto code_clear;
504
505
code_below_256:
506
{
507
if (codep > free_entp)
508
goto error_code;
509
free_entp->next = oldcodep;
510
free_entp->firstchar = oldcodep->firstchar;
511
free_entp->length = oldcodep->length + 1;
512
free_entp->value = (uint8_t)code;
513
free_entp->repeated =
514
(bool)(oldcodep->repeated & (oldcodep->value == code));
515
if (++free_entp > maxcodep)
516
{
517
if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */
518
nbits = BITS_MAX;
519
nbitsmask = MAXCODE(nbits);
520
maxcodep = dec_codetab + nbitsmask - 1;
521
if (free_entp >= &dec_codetab[CSIZE])
522
{
523
/* At that point, the next valid states are either EOI or a */
524
/* CODE_CLEAR. If a regular code is read, at the next */
525
/* attempt at registering a new entry, we will error out */
526
/* due to setting free_entp before any valid code */
527
free_entp = dec_codetab - 1;
528
}
529
}
530
oldcodep = codep;
531
*op++ = (uint8_t)code;
532
occ--;
533
if (occ == 0)
534
goto after_loop;
535
goto begin;
536
}
537
538
code_above_or_equal_to_258:
539
{
540
/*
541
* Add the new entry to the code table.
542
*/
543
544
if (codep >= free_entp)
545
{
546
if (codep != free_entp)
547
goto error_code;
548
free_entp->value = oldcodep->firstchar;
549
}
550
else
551
{
552
free_entp->value = codep->firstchar;
553
}
554
free_entp->repeated =
555
(bool)(oldcodep->repeated & (oldcodep->value == free_entp->value));
556
free_entp->next = oldcodep;
557
558
free_entp->firstchar = oldcodep->firstchar;
559
free_entp->length = oldcodep->length + 1;
560
if (++free_entp > maxcodep)
561
{
562
if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */
563
nbits = BITS_MAX;
564
nbitsmask = MAXCODE(nbits);
565
maxcodep = dec_codetab + nbitsmask - 1;
566
if (free_entp >= &dec_codetab[CSIZE])
567
{
568
/* At that point, the next valid states are either EOI or a */
569
/* CODE_CLEAR. If a regular code is read, at the next */
570
/* attempt at registering a new entry, we will error out */
571
/* due to setting free_entp before any valid code */
572
free_entp = dec_codetab - 1;
573
}
574
}
575
oldcodep = codep;
576
577
/*
578
* Code maps to a string, copy string
579
* value to output (written in reverse).
580
*/
581
/* tiny bit faster on x86_64 to store in unsigned short than int */
582
unsigned short len = codep->length;
583
584
if (len < 3) /* equivalent to len == 2 given all other conditions */
585
{
586
if (occ <= 2)
587
{
588
if (occ == 2)
589
{
590
memcpy(op, &(codep->firstchar), 2);
591
op += 2;
592
occ -= 2;
593
goto after_loop;
594
}
595
goto too_short_buffer;
596
}
597
598
memcpy(op, &(codep->firstchar), 2);
599
op += 2;
600
occ -= 2;
601
goto begin; /* we can save the comparison occ > 0 */
602
}
603
604
if (len == 3)
605
{
606
if (occ <= 3)
607
{
608
if (occ == 3)
609
{
610
op[0] = codep->firstchar;
611
op[1] = codep->next->value;
612
op[2] = codep->value;
613
op += 3;
614
occ -= 3;
615
goto after_loop;
616
}
617
goto too_short_buffer;
618
}
619
620
op[0] = codep->firstchar;
621
op[1] = codep->next->value;
622
op[2] = codep->value;
623
op += 3;
624
occ -= 3;
625
goto begin; /* we can save the comparison occ > 0 */
626
}
627
628
if (len > occ)
629
{
630
goto too_short_buffer;
631
}
632
633
if (codep->repeated)
634
{
635
memset(op, codep->value, len);
636
op += len;
637
occ -= len;
638
if (occ == 0)
639
goto after_loop;
640
goto begin;
641
}
642
643
uint8_t *tp = op + len;
644
645
assert(len >= 4);
646
647
*--tp = codep->value;
648
codep = codep->next;
649
*--tp = codep->value;
650
codep = codep->next;
651
*--tp = codep->value;
652
codep = codep->next;
653
*--tp = codep->value;
654
if (tp > op)
655
{
656
do
657
{
658
codep = codep->next;
659
*--tp = codep->value;
660
} while (tp > op);
661
}
662
663
assert(occ >= len);
664
op += len;
665
occ -= len;
666
if (occ == 0)
667
goto after_loop;
668
goto begin;
669
}
670
671
code_clear:
672
{
673
free_entp = dec_codetab + CODE_FIRST;
674
nbits = BITS_MIN;
675
nbitsmask = MAXCODE(BITS_MIN);
676
maxcodep = dec_codetab + nbitsmask - 1;
677
do
678
{
679
GetNextCodeLZW();
680
} while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */
681
if (code == CODE_EOI)
682
goto after_loop;
683
if (code > CODE_EOI)
684
{
685
goto error_code;
686
}
687
*op++ = (uint8_t)code;
688
occ--;
689
oldcodep = dec_codetab + code;
690
if (occ == 0)
691
goto after_loop;
692
goto begin;
693
}
694
}
695
696
too_short_buffer:
697
{
698
/*
699
* String is too long for decode buffer,
700
* locate portion that will fit, copy to
701
* the decode buffer, and setup restart
702
* logic for the next decoding call.
703
*/
704
sp->dec_codep = codep;
705
do
706
{
707
codep = codep->next;
708
} while (codep->length > occ);
709
710
sp->dec_restart = occ;
711
uint8_t *tp = op + occ;
712
do
713
{
714
*--tp = codep->value;
715
codep = codep->next;
716
} while (--occ);
717
}
718
719
after_loop:
720
tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp);
721
tif->tif_rawcp = (uint8_t *)bp;
722
sp->old_tif_rawcc = tif->tif_rawcc;
723
sp->dec_bitsleft = dec_bitsleft;
724
sp->lzw_nbits = (unsigned short)nbits;
725
sp->lzw_nextdata = nextdata;
726
sp->lzw_nextbits = nextbits;
727
sp->dec_nbitsmask = nbitsmask;
728
sp->dec_oldcodep = oldcodep;
729
sp->dec_free_entp = free_entp;
730
sp->dec_maxcodep = maxcodep;
731
732
if (occ > 0)
733
{
734
memset(op, 0, (size_t)occ);
735
sp->read_error = 1;
736
TIFFErrorExtR(tif, module,
737
"Not enough data at scanline %" PRIu32 " (short %" PRIu64
738
" bytes)",
739
tif->tif_row, (uint64_t)occ);
740
return (0);
741
}
742
return (1);
743
744
no_eoi:
745
memset(op, 0, (size_t)occ);
746
sp->read_error = 1;
747
TIFFErrorExtR(tif, module,
748
"LZWDecode: Strip %" PRIu32 " not terminated with EOI code",
749
tif->tif_curstrip);
750
return 0;
751
error_code:
752
memset(op, 0, (size_t)occ);
753
sp->read_error = 1;
754
TIFFErrorExtR(tif, tif->tif_name, "Using code not yet in table");
755
return 0;
756
}
757
758
#ifdef LZW_COMPAT
759
760
/*
761
* This check shouldn't be necessary because each
762
* strip is suppose to be terminated with CODE_EOI.
763
*/
764
#define NextCode(_tif, _sp, _bp, _code, _get, dec_bitsleft) \
765
{ \
766
if (dec_bitsleft < (uint64_t)nbits) \
767
{ \
768
TIFFWarningExtR(_tif, module, \
769
"LZWDecode: Strip %" PRIu32 \
770
" not terminated with EOI code", \
771
_tif->tif_curstrip); \
772
_code = CODE_EOI; \
773
} \
774
else \
775
{ \
776
_get(_sp, _bp, _code); \
777
dec_bitsleft -= nbits; \
778
} \
779
}
780
781
/*
782
* Decode a "hunk of data" for old images.
783
*/
784
#define GetNextCodeCompat(sp, bp, code) \
785
{ \
786
nextdata |= (unsigned long)*(bp)++ << nextbits; \
787
nextbits += 8; \
788
if (nextbits < nbits) \
789
{ \
790
nextdata |= (unsigned long)*(bp)++ << nextbits; \
791
nextbits += 8; \
792
} \
793
code = (hcode_t)(nextdata & nbitsmask); \
794
nextdata >>= nbits; \
795
nextbits -= nbits; \
796
}
797
798
static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s)
799
{
800
static const char module[] = "LZWDecodeCompat";
801
LZWCodecState *sp = LZWDecoderState(tif);
802
uint8_t *op = (uint8_t *)op0;
803
tmsize_t occ = occ0;
804
uint8_t *tp;
805
uint8_t *bp;
806
int code, nbits;
807
int len;
808
long nextbits, nbitsmask;
809
WordType nextdata;
810
code_t *codep, *free_entp, *maxcodep, *oldcodep;
811
812
(void)s;
813
assert(sp != NULL);
814
815
/*
816
* Restart interrupted output operation.
817
*/
818
if (sp->dec_restart)
819
{
820
tmsize_t residue;
821
822
codep = sp->dec_codep;
823
residue = codep->length - sp->dec_restart;
824
if (residue > occ)
825
{
826
/*
827
* Residue from previous decode is sufficient
828
* to satisfy decode request. Skip to the
829
* start of the decoded string, place decoded
830
* values in the output buffer, and return.
831
*/
832
sp->dec_restart += occ;
833
do
834
{
835
codep = codep->next;
836
} while (--residue > occ);
837
tp = op + occ;
838
do
839
{
840
*--tp = codep->value;
841
codep = codep->next;
842
} while (--occ);
843
return (1);
844
}
845
/*
846
* Residue satisfies only part of the decode request.
847
*/
848
op += residue;
849
occ -= residue;
850
tp = op;
851
do
852
{
853
*--tp = codep->value;
854
codep = codep->next;
855
} while (--residue);
856
sp->dec_restart = 0;
857
}
858
859
bp = (uint8_t *)tif->tif_rawcp;
860
861
sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3);
862
uint64_t dec_bitsleft = sp->dec_bitsleft;
863
864
nbits = sp->lzw_nbits;
865
nextdata = sp->lzw_nextdata;
866
nextbits = sp->lzw_nextbits;
867
nbitsmask = sp->dec_nbitsmask;
868
oldcodep = sp->dec_oldcodep;
869
free_entp = sp->dec_free_entp;
870
maxcodep = sp->dec_maxcodep;
871
872
while (occ > 0)
873
{
874
NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft);
875
if (code == CODE_EOI)
876
break;
877
if (code == CODE_CLEAR)
878
{
879
do
880
{
881
free_entp = sp->dec_codetab + CODE_FIRST;
882
_TIFFmemset(free_entp, 0,
883
(CSIZE - CODE_FIRST) * sizeof(code_t));
884
nbits = BITS_MIN;
885
nbitsmask = MAXCODE(BITS_MIN);
886
maxcodep = sp->dec_codetab + nbitsmask;
887
NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft);
888
} while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */
889
if (code == CODE_EOI)
890
break;
891
if (code > CODE_CLEAR)
892
{
893
TIFFErrorExtR(
894
tif, tif->tif_name,
895
"LZWDecode: Corrupted LZW table at scanline %" PRIu32,
896
tif->tif_row);
897
return (0);
898
}
899
*op++ = (uint8_t)code;
900
occ--;
901
oldcodep = sp->dec_codetab + code;
902
continue;
903
}
904
codep = sp->dec_codetab + code;
905
906
/*
907
* Add the new entry to the code table.
908
*/
909
if (free_entp < &sp->dec_codetab[0] ||
910
free_entp >= &sp->dec_codetab[CSIZE])
911
{
912
TIFFErrorExtR(tif, module,
913
"Corrupted LZW table at scanline %" PRIu32,
914
tif->tif_row);
915
return (0);
916
}
917
918
free_entp->next = oldcodep;
919
if (free_entp->next < &sp->dec_codetab[0] ||
920
free_entp->next >= &sp->dec_codetab[CSIZE])
921
{
922
TIFFErrorExtR(tif, module,
923
"Corrupted LZW table at scanline %" PRIu32,
924
tif->tif_row);
925
return (0);
926
}
927
free_entp->firstchar = free_entp->next->firstchar;
928
free_entp->length = free_entp->next->length + 1;
929
free_entp->value =
930
(codep < free_entp) ? codep->firstchar : free_entp->firstchar;
931
if (++free_entp > maxcodep)
932
{
933
if (++nbits > BITS_MAX) /* should not happen */
934
nbits = BITS_MAX;
935
nbitsmask = MAXCODE(nbits);
936
maxcodep = sp->dec_codetab + nbitsmask;
937
}
938
oldcodep = codep;
939
if (code >= 256)
940
{
941
/*
942
* Code maps to a string, copy string
943
* value to output (written in reverse).
944
*/
945
if (codep->length == 0)
946
{
947
TIFFErrorExtR(
948
tif, module,
949
"Wrong length of decoded "
950
"string: data probably corrupted at scanline %" PRIu32,
951
tif->tif_row);
952
return (0);
953
}
954
if (codep->length > occ)
955
{
956
/*
957
* String is too long for decode buffer,
958
* locate portion that will fit, copy to
959
* the decode buffer, and setup restart
960
* logic for the next decoding call.
961
*/
962
sp->dec_codep = codep;
963
do
964
{
965
codep = codep->next;
966
} while (codep->length > occ);
967
sp->dec_restart = occ;
968
tp = op + occ;
969
do
970
{
971
*--tp = codep->value;
972
codep = codep->next;
973
} while (--occ);
974
break;
975
}
976
len = codep->length;
977
tp = op + len;
978
do
979
{
980
*--tp = codep->value;
981
codep = codep->next;
982
} while (codep && tp > op);
983
assert(occ >= len);
984
op += len;
985
occ -= len;
986
}
987
else
988
{
989
*op++ = (uint8_t)code;
990
occ--;
991
}
992
}
993
994
tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp);
995
tif->tif_rawcp = (uint8_t *)bp;
996
997
sp->old_tif_rawcc = tif->tif_rawcc;
998
sp->dec_bitsleft = dec_bitsleft;
999
1000
sp->lzw_nbits = (unsigned short)nbits;
1001
sp->lzw_nextdata = nextdata;
1002
sp->lzw_nextbits = nextbits;
1003
sp->dec_nbitsmask = nbitsmask;
1004
sp->dec_oldcodep = oldcodep;
1005
sp->dec_free_entp = free_entp;
1006
sp->dec_maxcodep = maxcodep;
1007
1008
if (occ > 0)
1009
{
1010
TIFFErrorExtR(tif, module,
1011
"Not enough data at scanline %" PRIu32 " (short %" PRIu64
1012
" bytes)",
1013
tif->tif_row, (uint64_t)occ);
1014
return (0);
1015
}
1016
return (1);
1017
}
1018
#endif /* LZW_COMPAT */
1019
1020
#ifndef LZW_READ_ONLY
1021
1022
static void cl_hash(LZWCodecState *);
1023
1024
/*
1025
* LZW Encoding.
1026
*/
1027
1028
static int LZWSetupEncode(TIFF *tif)
1029
{
1030
static const char module[] = "LZWSetupEncode";
1031
LZWCodecState *sp = LZWEncoderState(tif);
1032
1033
assert(sp != NULL);
1034
sp->enc_hashtab = (hash_t *)_TIFFmallocExt(tif, HSIZE * sizeof(hash_t));
1035
if (sp->enc_hashtab == NULL)
1036
{
1037
TIFFErrorExtR(tif, module, "No space for LZW hash table");
1038
return (0);
1039
}
1040
return (1);
1041
}
1042
1043
/*
1044
* Reset encoding state at the start of a strip.
1045
*/
1046
static int LZWPreEncode(TIFF *tif, uint16_t s)
1047
{
1048
LZWCodecState *sp = LZWEncoderState(tif);
1049
1050
(void)s;
1051
assert(sp != NULL);
1052
1053
if (sp->enc_hashtab == NULL)
1054
{
1055
tif->tif_setupencode(tif);
1056
}
1057
1058
sp->lzw_nbits = BITS_MIN;
1059
sp->lzw_maxcode = MAXCODE(BITS_MIN);
1060
sp->lzw_free_ent = CODE_FIRST;
1061
sp->lzw_nextbits = 0;
1062
sp->lzw_nextdata = 0;
1063
sp->enc_checkpoint = CHECK_GAP;
1064
sp->enc_ratio = 0;
1065
sp->enc_incount = 0;
1066
sp->enc_outcount = 0;
1067
/*
1068
* The 4 here insures there is space for 2 max-sized
1069
* codes in LZWEncode and LZWPostDecode.
1070
*/
1071
sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize - 1 - 4;
1072
cl_hash(sp); /* clear hash table */
1073
sp->enc_oldcode = (hcode_t)-1; /* generates CODE_CLEAR in LZWEncode */
1074
return (1);
1075
}
1076
1077
#define CALCRATIO(sp, rat) \
1078
{ \
1079
if (incount > 0x007fffff) \
1080
{ /* NB: shift will overflow */ \
1081
rat = outcount >> 8; \
1082
rat = (rat == 0 ? 0x7fffffff : incount / rat); \
1083
} \
1084
else \
1085
rat = (incount << 8) / outcount; \
1086
}
1087
1088
/* Explicit 0xff masking to make icc -check=conversions happy */
1089
#define PutNextCode(op, c) \
1090
{ \
1091
nextdata = (nextdata << nbits) | c; \
1092
nextbits += nbits; \
1093
*op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \
1094
nextbits -= 8; \
1095
if (nextbits >= 8) \
1096
{ \
1097
*op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \
1098
nextbits -= 8; \
1099
} \
1100
outcount += nbits; \
1101
}
1102
1103
/*
1104
* Encode a chunk of pixels.
1105
*
1106
* Uses an open addressing double hashing (no chaining) on the
1107
* prefix code/next character combination. We do a variant of
1108
* Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's
1109
* relatively-prime secondary probe. Here, the modular division
1110
* first probe is gives way to a faster exclusive-or manipulation.
1111
* Also do block compression with an adaptive reset, whereby the
1112
* code table is cleared when the compression ratio decreases,
1113
* but after the table fills. The variable-length output codes
1114
* are re-sized at this point, and a CODE_CLEAR is generated
1115
* for the decoder.
1116
*/
1117
static int LZWEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s)
1118
{
1119
register LZWCodecState *sp = LZWEncoderState(tif);
1120
register long fcode;
1121
register hash_t *hp;
1122
register int h, c;
1123
hcode_t ent;
1124
long disp;
1125
tmsize_t incount, outcount, checkpoint;
1126
WordType nextdata;
1127
long nextbits;
1128
int free_ent, maxcode, nbits;
1129
uint8_t *op;
1130
uint8_t *limit;
1131
1132
(void)s;
1133
if (sp == NULL)
1134
return (0);
1135
1136
assert(sp->enc_hashtab != NULL);
1137
1138
/*
1139
* Load local state.
1140
*/
1141
incount = sp->enc_incount;
1142
outcount = sp->enc_outcount;
1143
checkpoint = sp->enc_checkpoint;
1144
nextdata = sp->lzw_nextdata;
1145
nextbits = sp->lzw_nextbits;
1146
free_ent = sp->lzw_free_ent;
1147
maxcode = sp->lzw_maxcode;
1148
nbits = sp->lzw_nbits;
1149
op = tif->tif_rawcp;
1150
limit = sp->enc_rawlimit;
1151
ent = (hcode_t)sp->enc_oldcode;
1152
1153
if (ent == (hcode_t)-1 && cc > 0)
1154
{
1155
/*
1156
* NB: This is safe because it can only happen
1157
* at the start of a strip where we know there
1158
* is space in the data buffer.
1159
*/
1160
PutNextCode(op, CODE_CLEAR);
1161
ent = *bp++;
1162
cc--;
1163
incount++;
1164
}
1165
while (cc > 0)
1166
{
1167
c = *bp++;
1168
cc--;
1169
incount++;
1170
fcode = ((long)c << BITS_MAX) + ent;
1171
h = (c << HSHIFT) ^ ent; /* xor hashing */
1172
#ifdef _WINDOWS
1173
/*
1174
* Check hash index for an overflow.
1175
*/
1176
if (h >= HSIZE)
1177
h -= HSIZE;
1178
#endif
1179
hp = &sp->enc_hashtab[h];
1180
if (hp->hash == fcode)
1181
{
1182
ent = hp->code;
1183
continue;
1184
}
1185
if (hp->hash >= 0)
1186
{
1187
/*
1188
* Primary hash failed, check secondary hash.
1189
*/
1190
disp = HSIZE - h;
1191
if (h == 0)
1192
disp = 1;
1193
do
1194
{
1195
/*
1196
* Avoid pointer arithmetic because of
1197
* wraparound problems with segments.
1198
*/
1199
if ((h -= disp) < 0)
1200
h += HSIZE;
1201
hp = &sp->enc_hashtab[h];
1202
if (hp->hash == fcode)
1203
{
1204
ent = hp->code;
1205
goto hit;
1206
}
1207
} while (hp->hash >= 0);
1208
}
1209
/*
1210
* New entry, emit code and add to table.
1211
*/
1212
/*
1213
* Verify there is space in the buffer for the code
1214
* and any potential Clear code that might be emitted
1215
* below. The value of limit is setup so that there
1216
* are at least 4 bytes free--room for 2 codes.
1217
*/
1218
if (op > limit)
1219
{
1220
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1221
if (!TIFFFlushData1(tif))
1222
return 0;
1223
op = tif->tif_rawdata;
1224
}
1225
PutNextCode(op, ent);
1226
ent = (hcode_t)c;
1227
hp->code = (hcode_t)(free_ent++);
1228
hp->hash = fcode;
1229
if (free_ent == CODE_MAX - 1)
1230
{
1231
/* table is full, emit clear code and reset */
1232
cl_hash(sp);
1233
sp->enc_ratio = 0;
1234
incount = 0;
1235
outcount = 0;
1236
free_ent = CODE_FIRST;
1237
PutNextCode(op, CODE_CLEAR);
1238
nbits = BITS_MIN;
1239
maxcode = MAXCODE(BITS_MIN);
1240
}
1241
else
1242
{
1243
/*
1244
* If the next entry is going to be too big for
1245
* the code size, then increase it, if possible.
1246
*/
1247
if (free_ent > maxcode)
1248
{
1249
nbits++;
1250
assert(nbits <= BITS_MAX);
1251
maxcode = (int)MAXCODE(nbits);
1252
}
1253
else if (incount >= checkpoint)
1254
{
1255
tmsize_t rat;
1256
/*
1257
* Check compression ratio and, if things seem
1258
* to be slipping, clear the hash table and
1259
* reset state. The compression ratio is a
1260
* 24+8-bit fractional number.
1261
*/
1262
checkpoint = incount + CHECK_GAP;
1263
CALCRATIO(sp, rat);
1264
if (rat <= sp->enc_ratio)
1265
{
1266
cl_hash(sp);
1267
sp->enc_ratio = 0;
1268
incount = 0;
1269
outcount = 0;
1270
free_ent = CODE_FIRST;
1271
PutNextCode(op, CODE_CLEAR);
1272
nbits = BITS_MIN;
1273
maxcode = MAXCODE(BITS_MIN);
1274
}
1275
else
1276
sp->enc_ratio = rat;
1277
}
1278
}
1279
hit:;
1280
}
1281
1282
/*
1283
* Restore global state.
1284
*/
1285
sp->enc_incount = incount;
1286
sp->enc_outcount = outcount;
1287
sp->enc_checkpoint = checkpoint;
1288
sp->enc_oldcode = ent;
1289
sp->lzw_nextdata = nextdata;
1290
sp->lzw_nextbits = nextbits;
1291
sp->lzw_free_ent = (unsigned short)free_ent;
1292
sp->lzw_maxcode = (unsigned short)maxcode;
1293
sp->lzw_nbits = (unsigned short)nbits;
1294
tif->tif_rawcp = op;
1295
return (1);
1296
}
1297
1298
/*
1299
* Finish off an encoded strip by flushing the last
1300
* string and tacking on an End Of Information code.
1301
*/
1302
static int LZWPostEncode(TIFF *tif)
1303
{
1304
register LZWCodecState *sp = LZWEncoderState(tif);
1305
uint8_t *op = tif->tif_rawcp;
1306
long nextbits = sp->lzw_nextbits;
1307
WordType nextdata = sp->lzw_nextdata;
1308
tmsize_t outcount = sp->enc_outcount;
1309
int nbits = sp->lzw_nbits;
1310
1311
if (op > sp->enc_rawlimit)
1312
{
1313
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1314
if (!TIFFFlushData1(tif))
1315
return 0;
1316
op = tif->tif_rawdata;
1317
}
1318
if (sp->enc_oldcode != (hcode_t)-1)
1319
{
1320
int free_ent = sp->lzw_free_ent;
1321
1322
PutNextCode(op, sp->enc_oldcode);
1323
sp->enc_oldcode = (hcode_t)-1;
1324
free_ent++;
1325
1326
if (free_ent == CODE_MAX - 1)
1327
{
1328
/* table is full, emit clear code and reset */
1329
outcount = 0;
1330
PutNextCode(op, CODE_CLEAR);
1331
nbits = BITS_MIN;
1332
}
1333
else
1334
{
1335
/*
1336
* If the next entry is going to be too big for
1337
* the code size, then increase it, if possible.
1338
*/
1339
if (free_ent > sp->lzw_maxcode)
1340
{
1341
nbits++;
1342
assert(nbits <= BITS_MAX);
1343
}
1344
}
1345
}
1346
PutNextCode(op, CODE_EOI);
1347
/* Explicit 0xff masking to make icc -check=conversions happy */
1348
if (nextbits > 0)
1349
*op++ = (unsigned char)((nextdata << (8 - nextbits)) & 0xff);
1350
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1351
(void)outcount;
1352
return (1);
1353
}
1354
1355
/*
1356
* Reset encoding hash table.
1357
*/
1358
static void cl_hash(LZWCodecState *sp)
1359
{
1360
register hash_t *hp = &sp->enc_hashtab[HSIZE - 1];
1361
register long i = HSIZE - 8;
1362
1363
do
1364
{
1365
i -= 8;
1366
hp[-7].hash = -1;
1367
hp[-6].hash = -1;
1368
hp[-5].hash = -1;
1369
hp[-4].hash = -1;
1370
hp[-3].hash = -1;
1371
hp[-2].hash = -1;
1372
hp[-1].hash = -1;
1373
hp[0].hash = -1;
1374
hp -= 8;
1375
} while (i >= 0);
1376
for (i += 8; i > 0; i--, hp--)
1377
hp->hash = -1;
1378
}
1379
1380
#endif
1381
1382
static void LZWCleanup(TIFF *tif)
1383
{
1384
(void)TIFFPredictorCleanup(tif);
1385
1386
assert(tif->tif_data != NULL);
1387
1388
if (LZWDecoderState(tif)->dec_codetab)
1389
_TIFFfreeExt(tif, LZWDecoderState(tif)->dec_codetab);
1390
1391
if (LZWEncoderState(tif)->enc_hashtab)
1392
_TIFFfreeExt(tif, LZWEncoderState(tif)->enc_hashtab);
1393
1394
_TIFFfreeExt(tif, tif->tif_data);
1395
tif->tif_data = NULL;
1396
1397
_TIFFSetDefaultCompressionState(tif);
1398
}
1399
1400
int TIFFInitLZW(TIFF *tif, int scheme)
1401
{
1402
static const char module[] = "TIFFInitLZW";
1403
(void)scheme;
1404
assert(scheme == COMPRESSION_LZW);
1405
/*
1406
* Allocate state block so tag methods have storage to record values.
1407
*/
1408
tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState));
1409
if (tif->tif_data == NULL)
1410
goto bad;
1411
LZWDecoderState(tif)->dec_codetab = NULL;
1412
LZWDecoderState(tif)->dec_decode = NULL;
1413
LZWEncoderState(tif)->enc_hashtab = NULL;
1414
LZWState(tif)->rw_mode = tif->tif_mode;
1415
1416
/*
1417
* Install codec methods.
1418
*/
1419
tif->tif_fixuptags = LZWFixupTags;
1420
tif->tif_setupdecode = LZWSetupDecode;
1421
tif->tif_predecode = LZWPreDecode;
1422
tif->tif_decoderow = LZWDecode;
1423
tif->tif_decodestrip = LZWDecode;
1424
tif->tif_decodetile = LZWDecode;
1425
#ifndef LZW_READ_ONLY
1426
tif->tif_setupencode = LZWSetupEncode;
1427
tif->tif_preencode = LZWPreEncode;
1428
tif->tif_postencode = LZWPostEncode;
1429
tif->tif_encoderow = LZWEncode;
1430
tif->tif_encodestrip = LZWEncode;
1431
tif->tif_encodetile = LZWEncode;
1432
#endif
1433
tif->tif_cleanup = LZWCleanup;
1434
/*
1435
* Setup predictor setup.
1436
*/
1437
(void)TIFFPredictorInit(tif);
1438
return (1);
1439
bad:
1440
TIFFErrorExtR(tif, module, "No space for LZW state block");
1441
return (0);
1442
}
1443
1444
/*
1445
* Copyright (c) 1985, 1986 The Regents of the University of California.
1446
* All rights reserved.
1447
*
1448
* This code is derived from software contributed to Berkeley by
1449
* James A. Woods, derived from original work by Spencer Thomas
1450
* and Joseph Orost.
1451
*
1452
* Redistribution and use in source and binary forms are permitted
1453
* provided that the above copyright notice and this paragraph are
1454
* duplicated in all such forms and that any documentation,
1455
* advertising materials, and other materials related to such
1456
* distribution and use acknowledge that the software was developed
1457
* by the University of California, Berkeley. The name of the
1458
* University may not be used to endorse or promote products derived
1459
* from this software without specific prior written permission.
1460
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
1461
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
1462
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1463
*/
1464
#endif /* LZW_SUPPORT */
1465
1466