Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/tiff/libtiff/tif_lzw.c
4391 views
1
/*
2
* Copyright (c) 1988-1997 Sam Leffler
3
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
4
* Copyright (c) 2022 Even Rouault
5
*
6
* Permission to use, copy, modify, distribute, and sell this software and
7
* its documentation for any purpose is hereby granted without fee, provided
8
* that (i) the above copyright notices and this permission notice appear in
9
* all copies of the software and related documentation, and (ii) the names of
10
* Sam Leffler and Silicon Graphics may not be used in any advertising or
11
* publicity relating to the software without the specific, prior written
12
* permission of Sam Leffler and Silicon Graphics.
13
*
14
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
15
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
16
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
17
*
18
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
19
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
20
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
21
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
22
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
23
* OF THIS SOFTWARE.
24
*/
25
26
#include "tiffiop.h"
27
#ifdef LZW_SUPPORT
28
/*
29
* TIFF Library.
30
* Rev 5.0 Lempel-Ziv & Welch Compression Support
31
*
32
* This code is derived from the compress program whose code is
33
* derived from software contributed to Berkeley by James A. Woods,
34
* derived from original work by Spencer Thomas and Joseph Orost.
35
*
36
* The original Berkeley copyright notice appears below in its entirety.
37
*/
38
#include "tif_predict.h"
39
40
#include <stdbool.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
44
/* Select the plausible largest natural integer type for the architecture */
45
#define SIZEOF_WORDTYPE SIZEOF_SIZE_T
46
typedef size_t WordType;
47
48
/*
49
* NB: The 5.0 spec describes a different algorithm than Aldus
50
* implements. Specifically, Aldus does code length transitions
51
* one code earlier than should be done (for real LZW).
52
* Earlier versions of this library implemented the correct
53
* LZW algorithm, but emitted codes in a bit order opposite
54
* to the TIFF spec. Thus, to maintain compatibility w/ Aldus
55
* we interpret MSB-LSB ordered codes to be images written w/
56
* old versions of this library, but otherwise adhere to the
57
* Aldus "off by one" algorithm.
58
*
59
* Future revisions to the TIFF spec are expected to "clarify this issue".
60
*/
61
#define LZW_COMPAT /* include backwards compatibility code */
62
63
#define MAXCODE(n) ((1L << (n)) - 1)
64
/*
65
* The TIFF spec specifies that encoded bit
66
* strings range from 9 to 12 bits.
67
*/
68
#define BITS_MIN 9 /* start with 9 bits */
69
#define BITS_MAX 12 /* max of 12 bit strings */
70
/* predefined codes */
71
#define CODE_CLEAR 256 /* code to clear string table */
72
#define CODE_EOI 257 /* end-of-information code */
73
#define CODE_FIRST 258 /* first free code entry */
74
#define CODE_MAX MAXCODE(BITS_MAX)
75
#define HSIZE 9001L /* 91% occupancy */
76
#define HSHIFT (13 - 8)
77
#ifdef LZW_COMPAT
78
/* NB: +1024 is for compatibility with old files */
79
#define CSIZE (MAXCODE(BITS_MAX) + 1024L)
80
#else
81
#define CSIZE (MAXCODE(BITS_MAX) + 1L)
82
#endif
83
84
/*
85
* State block for each open TIFF file using LZW
86
* compression/decompression. Note that the predictor
87
* state block must be first in this data structure.
88
*/
89
typedef struct
90
{
91
TIFFPredictorState predict; /* predictor super class */
92
93
unsigned short nbits; /* # of bits/code */
94
unsigned short maxcode; /* maximum code for lzw_nbits */
95
unsigned short free_ent; /* next free entry in hash table */
96
WordType nextdata; /* next bits of i/o */
97
long nextbits; /* # of valid bits in lzw_nextdata */
98
99
int rw_mode; /* preserve rw_mode from init */
100
} LZWBaseState;
101
102
#define lzw_nbits base.nbits
103
#define lzw_maxcode base.maxcode
104
#define lzw_free_ent base.free_ent
105
#define lzw_nextdata base.nextdata
106
#define lzw_nextbits base.nextbits
107
108
/*
109
* Encoding-specific state.
110
*/
111
typedef uint16_t hcode_t; /* codes fit in 16 bits */
112
typedef struct
113
{
114
long hash;
115
hcode_t code;
116
} hash_t;
117
118
/*
119
* Decoding-specific state.
120
*/
121
typedef struct code_ent
122
{
123
struct code_ent *next;
124
unsigned short length; /* string len, including this token */
125
/* firstchar should be placed immediately before value in this structure */
126
unsigned char firstchar; /* first token of string */
127
unsigned char value; /* data value */
128
bool repeated;
129
} code_t;
130
131
typedef int (*decodeFunc)(TIFF *, uint8_t *, tmsize_t, uint16_t);
132
133
typedef struct
134
{
135
LZWBaseState base;
136
137
/* Decoding specific data */
138
long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */
139
tmsize_t dec_restart; /* restart count */
140
uint64_t dec_bitsleft; /* available bits in raw data */
141
tmsize_t old_tif_rawcc; /* value of tif_rawcc at the end of the previous
142
TIFLZWDecode() call */
143
decodeFunc dec_decode; /* regular or backwards compatible */
144
code_t *dec_codep; /* current recognized code */
145
code_t *dec_oldcodep; /* previously recognized code */
146
code_t *dec_free_entp; /* next free entry */
147
code_t *dec_maxcodep; /* max available entry */
148
code_t *dec_codetab; /* kept separate for small machines */
149
int read_error; /* whether a read error has occurred, and which should cause
150
further reads in the same strip/tile to be aborted */
151
152
/* Encoding specific data */
153
int enc_oldcode; /* last code encountered */
154
tmsize_t enc_checkpoint; /* point at which to clear table */
155
#define CHECK_GAP 10000 /* enc_ratio check interval */
156
tmsize_t enc_ratio; /* current compression ratio */
157
tmsize_t enc_incount; /* (input) data bytes encoded */
158
tmsize_t enc_outcount; /* encoded (output) bytes */
159
uint8_t *enc_rawlimit; /* bound on tif_rawdata buffer */
160
hash_t *enc_hashtab; /* kept separate for small machines */
161
} LZWCodecState;
162
163
#define LZWState(tif) ((LZWBaseState *)(tif)->tif_data)
164
#define LZWDecoderState(tif) ((LZWCodecState *)LZWState(tif))
165
#define LZWEncoderState(tif) ((LZWCodecState *)LZWState(tif))
166
167
static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s);
168
#ifdef LZW_COMPAT
169
static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s);
170
#endif
171
static void cl_hash(LZWCodecState *);
172
173
/*
174
* LZW Decoder.
175
*/
176
177
static int LZWFixupTags(TIFF *tif)
178
{
179
(void)tif;
180
return (1);
181
}
182
183
static int LZWSetupDecode(TIFF *tif)
184
{
185
static const char module[] = "LZWSetupDecode";
186
LZWCodecState *sp = LZWDecoderState(tif);
187
int code;
188
189
if (sp == NULL)
190
{
191
/*
192
* Allocate state block so tag methods have storage to record
193
* values.
194
*/
195
tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState));
196
if (tif->tif_data == NULL)
197
{
198
TIFFErrorExtR(tif, module, "No space for LZW state block");
199
return (0);
200
}
201
202
sp = LZWDecoderState(tif);
203
sp->dec_codetab = NULL;
204
sp->dec_decode = NULL;
205
206
/*
207
* Setup predictor setup.
208
*/
209
(void)TIFFPredictorInit(tif);
210
}
211
212
if (sp->dec_codetab == NULL)
213
{
214
sp->dec_codetab = (code_t *)_TIFFmallocExt(tif, CSIZE * sizeof(code_t));
215
if (sp->dec_codetab == NULL)
216
{
217
TIFFErrorExtR(tif, module, "No space for LZW code table");
218
return (0);
219
}
220
/*
221
* Pre-load the table.
222
*/
223
code = 255;
224
do
225
{
226
sp->dec_codetab[code].firstchar = (unsigned char)code;
227
sp->dec_codetab[code].value = (unsigned char)code;
228
sp->dec_codetab[code].repeated = true;
229
sp->dec_codetab[code].length = 1;
230
sp->dec_codetab[code].next = NULL;
231
} while (code--);
232
/*
233
* Zero-out the unused entries */
234
/* Silence false positive */
235
/* coverity[overrun-buffer-arg] */
236
memset(&sp->dec_codetab[CODE_CLEAR], 0,
237
(CODE_FIRST - CODE_CLEAR) * sizeof(code_t));
238
}
239
return (1);
240
}
241
242
/*
243
* Setup state for decoding a strip.
244
*/
245
static int LZWPreDecode(TIFF *tif, uint16_t s)
246
{
247
static const char module[] = "LZWPreDecode";
248
LZWCodecState *sp = LZWDecoderState(tif);
249
250
(void)s;
251
assert(sp != NULL);
252
if (sp->dec_codetab == NULL)
253
{
254
tif->tif_setupdecode(tif);
255
if (sp->dec_codetab == NULL)
256
return (0);
257
}
258
259
/*
260
* Check for old bit-reversed codes.
261
*/
262
if (tif->tif_rawcc >= 2 && tif->tif_rawdata[0] == 0 &&
263
(tif->tif_rawdata[1] & 0x1))
264
{
265
#ifdef LZW_COMPAT
266
if (!sp->dec_decode)
267
{
268
TIFFWarningExtR(tif, module, "Old-style LZW codes, convert file");
269
/*
270
* Override default decoding methods with
271
* ones that deal with the old coding.
272
* Otherwise the predictor versions set
273
* above will call the compatibility routines
274
* through the dec_decode method.
275
*/
276
tif->tif_decoderow = LZWDecodeCompat;
277
tif->tif_decodestrip = LZWDecodeCompat;
278
tif->tif_decodetile = LZWDecodeCompat;
279
/*
280
* If doing horizontal differencing, must
281
* re-setup the predictor logic since we
282
* switched the basic decoder methods...
283
*/
284
(*tif->tif_setupdecode)(tif);
285
sp->dec_decode = LZWDecodeCompat;
286
}
287
sp->lzw_maxcode = MAXCODE(BITS_MIN);
288
#else /* !LZW_COMPAT */
289
if (!sp->dec_decode)
290
{
291
TIFFErrorExtR(tif, module, "Old-style LZW codes not supported");
292
sp->dec_decode = LZWDecode;
293
}
294
return (0);
295
#endif /* !LZW_COMPAT */
296
}
297
else
298
{
299
sp->lzw_maxcode = MAXCODE(BITS_MIN) - 1;
300
sp->dec_decode = LZWDecode;
301
}
302
sp->lzw_nbits = BITS_MIN;
303
sp->lzw_nextbits = 0;
304
sp->lzw_nextdata = 0;
305
306
sp->dec_restart = 0;
307
sp->dec_nbitsmask = MAXCODE(BITS_MIN);
308
sp->dec_bitsleft = 0;
309
sp->old_tif_rawcc = 0;
310
sp->dec_free_entp = sp->dec_codetab - 1; // + CODE_FIRST;
311
/*
312
* Zero entries that are not yet filled in. We do
313
* this to guard against bogus input data that causes
314
* us to index into undefined entries. If you can
315
* come up with a way to safely bounds-check input codes
316
* while decoding then you can remove this operation.
317
*/
318
sp->dec_oldcodep = &sp->dec_codetab[0];
319
sp->dec_maxcodep = &sp->dec_codetab[sp->dec_nbitsmask - 1];
320
sp->read_error = 0;
321
return (1);
322
}
323
324
/*
325
* Decode a "hunk of data".
326
*/
327
328
/* Get the next 32 or 64-bit from the input data */
329
#ifdef WORDS_BIGENDIAN
330
#define GetNextData(nextdata, bp) memcpy(&nextdata, bp, sizeof(nextdata))
331
#elif SIZEOF_WORDTYPE == 8
332
#if defined(_M_X64)
333
#define GetNextData(nextdata, bp) nextdata = _byteswap_uint64(*(uint64_t *)(bp))
334
#elif defined(__GNUC__)
335
#define GetNextData(nextdata, bp) \
336
memcpy(&nextdata, bp, sizeof(nextdata)); \
337
nextdata = __builtin_bswap64(nextdata)
338
#else
339
#define GetNextData(nextdata, bp) \
340
nextdata = (((uint64_t)bp[0]) << 56) | (((uint64_t)bp[1]) << 48) | \
341
(((uint64_t)bp[2]) << 40) | (((uint64_t)bp[3]) << 32) | \
342
(((uint64_t)bp[4]) << 24) | (((uint64_t)bp[5]) << 16) | \
343
(((uint64_t)bp[6]) << 8) | (((uint64_t)bp[7]))
344
#endif
345
#elif SIZEOF_WORDTYPE == 4
346
#if defined(_M_X86)
347
#define GetNextData(nextdata, bp) \
348
nextdata = _byteswap_ulong(*(unsigned long *)(bp))
349
#elif defined(__GNUC__)
350
#define GetNextData(nextdata, bp) \
351
memcpy(&nextdata, bp, sizeof(nextdata)); \
352
nextdata = __builtin_bswap32(nextdata)
353
#else
354
#define GetNextData(nextdata, bp) \
355
nextdata = (((uint32_t)bp[0]) << 24) | (((uint32_t)bp[1]) << 16) | \
356
(((uint32_t)bp[2]) << 8) | (((uint32_t)bp[3]))
357
#endif
358
#else
359
#error "Unhandled SIZEOF_WORDTYPE"
360
#endif
361
362
#define GetNextCodeLZW() \
363
do \
364
{ \
365
nextbits -= nbits; \
366
if (nextbits < 0) \
367
{ \
368
if (dec_bitsleft >= 8 * SIZEOF_WORDTYPE) \
369
{ \
370
unsigned codetmp = (unsigned)(nextdata << (-nextbits)); \
371
GetNextData(nextdata, bp); \
372
bp += SIZEOF_WORDTYPE; \
373
nextbits += 8 * SIZEOF_WORDTYPE; \
374
dec_bitsleft -= 8 * SIZEOF_WORDTYPE; \
375
code = (WordType)((codetmp | (nextdata >> nextbits)) & \
376
nbitsmask); \
377
break; \
378
} \
379
else \
380
{ \
381
if (dec_bitsleft < 8) \
382
{ \
383
goto no_eoi; \
384
} \
385
nextdata = (nextdata << 8) | *(bp)++; \
386
nextbits += 8; \
387
dec_bitsleft -= 8; \
388
if (nextbits < 0) \
389
{ \
390
if (dec_bitsleft < 8) \
391
{ \
392
goto no_eoi; \
393
} \
394
nextdata = (nextdata << 8) | *(bp)++; \
395
nextbits += 8; \
396
dec_bitsleft -= 8; \
397
} \
398
} \
399
} \
400
code = (WordType)((nextdata >> nextbits) & nbitsmask); \
401
} while (0)
402
403
static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s)
404
{
405
static const char module[] = "LZWDecode";
406
LZWCodecState *sp = LZWDecoderState(tif);
407
uint8_t *op = (uint8_t *)op0;
408
tmsize_t occ = occ0;
409
uint8_t *bp;
410
long nbits, nextbits, nbitsmask;
411
WordType nextdata;
412
code_t *free_entp, *maxcodep, *oldcodep;
413
414
(void)s;
415
assert(sp != NULL);
416
assert(sp->dec_codetab != NULL);
417
418
if (sp->read_error)
419
{
420
memset(op, 0, (size_t)occ);
421
TIFFErrorExtR(tif, module,
422
"LZWDecode: Scanline %" PRIu32 " cannot be read due to "
423
"previous error",
424
tif->tif_row);
425
return 0;
426
}
427
428
/*
429
* Restart interrupted output operation.
430
*/
431
if (sp->dec_restart)
432
{
433
tmsize_t residue;
434
435
code_t *codep = sp->dec_codep;
436
residue = codep->length - sp->dec_restart;
437
if (residue > occ)
438
{
439
/*
440
* Residue from previous decode is sufficient
441
* to satisfy decode request. Skip to the
442
* start of the decoded string, place decoded
443
* values in the output buffer, and return.
444
*/
445
sp->dec_restart += occ;
446
do
447
{
448
codep = codep->next;
449
} while (--residue > occ && codep);
450
if (codep)
451
{
452
uint8_t *tp = op + occ;
453
do
454
{
455
*--tp = codep->value;
456
codep = codep->next;
457
} while (--occ && codep);
458
}
459
return (1);
460
}
461
/*
462
* Residue satisfies only part of the decode request.
463
*/
464
op += residue;
465
occ -= residue;
466
uint8_t *tp = op;
467
do
468
{
469
*--tp = codep->value;
470
codep = codep->next;
471
} while (--residue && codep);
472
sp->dec_restart = 0;
473
}
474
475
bp = (uint8_t *)tif->tif_rawcp;
476
sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3);
477
uint64_t dec_bitsleft = sp->dec_bitsleft;
478
nbits = sp->lzw_nbits;
479
nextdata = sp->lzw_nextdata;
480
nextbits = sp->lzw_nextbits;
481
nbitsmask = sp->dec_nbitsmask;
482
oldcodep = sp->dec_oldcodep;
483
free_entp = sp->dec_free_entp;
484
maxcodep = sp->dec_maxcodep;
485
code_t *const dec_codetab = sp->dec_codetab;
486
code_t *codep;
487
488
if (occ == 0)
489
{
490
goto after_loop;
491
}
492
493
begin:
494
{
495
WordType code;
496
GetNextCodeLZW();
497
codep = dec_codetab + code;
498
if (code >= CODE_FIRST)
499
goto code_above_or_equal_to_258;
500
if (code < 256)
501
goto code_below_256;
502
if (code == CODE_EOI)
503
goto after_loop;
504
goto code_clear;
505
506
code_below_256:
507
{
508
if (codep > free_entp)
509
goto error_code;
510
free_entp->next = oldcodep;
511
free_entp->firstchar = oldcodep->firstchar;
512
free_entp->length = oldcodep->length + 1;
513
free_entp->value = (uint8_t)code;
514
free_entp->repeated =
515
(bool)(oldcodep->repeated & (oldcodep->value == code));
516
if (++free_entp > maxcodep)
517
{
518
if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */
519
nbits = BITS_MAX;
520
nbitsmask = MAXCODE(nbits);
521
maxcodep = dec_codetab + nbitsmask - 1;
522
if (free_entp >= &dec_codetab[CSIZE])
523
{
524
/* At that point, the next valid states are either EOI or a */
525
/* CODE_CLEAR. If a regular code is read, at the next */
526
/* attempt at registering a new entry, we will error out */
527
/* due to setting free_entp before any valid code */
528
free_entp = dec_codetab - 1;
529
}
530
}
531
oldcodep = codep;
532
*op++ = (uint8_t)code;
533
occ--;
534
if (occ == 0)
535
goto after_loop;
536
goto begin;
537
}
538
539
code_above_or_equal_to_258:
540
{
541
/*
542
* Add the new entry to the code table.
543
*/
544
545
if (codep >= free_entp)
546
{
547
if (codep != free_entp)
548
goto error_code;
549
free_entp->value = oldcodep->firstchar;
550
}
551
else
552
{
553
free_entp->value = codep->firstchar;
554
}
555
free_entp->repeated =
556
(bool)(oldcodep->repeated & (oldcodep->value == free_entp->value));
557
free_entp->next = oldcodep;
558
559
free_entp->firstchar = oldcodep->firstchar;
560
free_entp->length = oldcodep->length + 1;
561
if (++free_entp > maxcodep)
562
{
563
if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */
564
nbits = BITS_MAX;
565
nbitsmask = MAXCODE(nbits);
566
maxcodep = dec_codetab + nbitsmask - 1;
567
if (free_entp >= &dec_codetab[CSIZE])
568
{
569
/* At that point, the next valid states are either EOI or a */
570
/* CODE_CLEAR. If a regular code is read, at the next */
571
/* attempt at registering a new entry, we will error out */
572
/* due to setting free_entp before any valid code */
573
free_entp = dec_codetab - 1;
574
}
575
}
576
oldcodep = codep;
577
578
/*
579
* Code maps to a string, copy string
580
* value to output (written in reverse).
581
*/
582
/* tiny bit faster on x86_64 to store in unsigned short than int */
583
unsigned short len = codep->length;
584
585
if (len < 3) /* equivalent to len == 2 given all other conditions */
586
{
587
if (occ <= 2)
588
{
589
if (occ == 2)
590
{
591
memcpy(op, &(codep->firstchar), 2);
592
op += 2;
593
occ -= 2;
594
goto after_loop;
595
}
596
goto too_short_buffer;
597
}
598
599
memcpy(op, &(codep->firstchar), 2);
600
op += 2;
601
occ -= 2;
602
goto begin; /* we can save the comparison occ > 0 */
603
}
604
605
if (len == 3)
606
{
607
if (occ <= 3)
608
{
609
if (occ == 3)
610
{
611
op[0] = codep->firstchar;
612
op[1] = codep->next->value;
613
op[2] = codep->value;
614
op += 3;
615
occ -= 3;
616
goto after_loop;
617
}
618
goto too_short_buffer;
619
}
620
621
op[0] = codep->firstchar;
622
op[1] = codep->next->value;
623
op[2] = codep->value;
624
op += 3;
625
occ -= 3;
626
goto begin; /* we can save the comparison occ > 0 */
627
}
628
629
if (len > occ)
630
{
631
goto too_short_buffer;
632
}
633
634
if (codep->repeated)
635
{
636
memset(op, codep->value, len);
637
op += len;
638
occ -= len;
639
if (occ == 0)
640
goto after_loop;
641
goto begin;
642
}
643
644
uint8_t *tp = op + len;
645
646
assert(len >= 4);
647
648
*--tp = codep->value;
649
codep = codep->next;
650
*--tp = codep->value;
651
codep = codep->next;
652
*--tp = codep->value;
653
codep = codep->next;
654
*--tp = codep->value;
655
if (tp > op)
656
{
657
do
658
{
659
codep = codep->next;
660
*--tp = codep->value;
661
} while (tp > op);
662
}
663
664
assert(occ >= len);
665
op += len;
666
occ -= len;
667
if (occ == 0)
668
goto after_loop;
669
goto begin;
670
}
671
672
code_clear:
673
{
674
free_entp = dec_codetab + CODE_FIRST;
675
nbits = BITS_MIN;
676
nbitsmask = MAXCODE(BITS_MIN);
677
maxcodep = dec_codetab + nbitsmask - 1;
678
do
679
{
680
GetNextCodeLZW();
681
} while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */
682
if (code == CODE_EOI)
683
goto after_loop;
684
if (code > CODE_EOI)
685
{
686
goto error_code;
687
}
688
*op++ = (uint8_t)code;
689
occ--;
690
oldcodep = dec_codetab + code;
691
if (occ == 0)
692
goto after_loop;
693
goto begin;
694
}
695
}
696
697
too_short_buffer:
698
{
699
/*
700
* String is too long for decode buffer,
701
* locate portion that will fit, copy to
702
* the decode buffer, and setup restart
703
* logic for the next decoding call.
704
*/
705
sp->dec_codep = codep;
706
do
707
{
708
codep = codep->next;
709
} while (codep->length > occ);
710
711
sp->dec_restart = occ;
712
uint8_t *tp = op + occ;
713
do
714
{
715
*--tp = codep->value;
716
codep = codep->next;
717
} while (--occ);
718
}
719
720
after_loop:
721
tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp);
722
tif->tif_rawcp = (uint8_t *)bp;
723
sp->old_tif_rawcc = tif->tif_rawcc;
724
sp->dec_bitsleft = dec_bitsleft;
725
sp->lzw_nbits = (unsigned short)nbits;
726
sp->lzw_nextdata = nextdata;
727
sp->lzw_nextbits = nextbits;
728
sp->dec_nbitsmask = nbitsmask;
729
sp->dec_oldcodep = oldcodep;
730
sp->dec_free_entp = free_entp;
731
sp->dec_maxcodep = maxcodep;
732
733
if (occ > 0)
734
{
735
memset(op, 0, (size_t)occ);
736
TIFFErrorExtR(tif, module,
737
"Not enough data at scanline %" PRIu32 " (short %" PRIu64
738
" bytes)",
739
tif->tif_row, (uint64_t)occ);
740
return (0);
741
}
742
return (1);
743
744
no_eoi:
745
memset(op, 0, (size_t)occ);
746
sp->read_error = 1;
747
TIFFErrorExtR(tif, module,
748
"LZWDecode: Strip %" PRIu32 " not terminated with EOI code",
749
tif->tif_curstrip);
750
return 0;
751
error_code:
752
memset(op, 0, (size_t)occ);
753
sp->read_error = 1;
754
TIFFErrorExtR(tif, tif->tif_name, "Using code not yet in table");
755
return 0;
756
}
757
758
#ifdef LZW_COMPAT
759
760
/*
761
* This check shouldn't be necessary because each
762
* strip is suppose to be terminated with CODE_EOI.
763
*/
764
#define NextCode(_tif, _sp, _bp, _code, _get, dec_bitsleft) \
765
{ \
766
if (dec_bitsleft < (uint64_t)nbits) \
767
{ \
768
TIFFWarningExtR(_tif, module, \
769
"LZWDecode: Strip %" PRIu32 \
770
" not terminated with EOI code", \
771
_tif->tif_curstrip); \
772
_code = CODE_EOI; \
773
} \
774
else \
775
{ \
776
_get(_sp, _bp, _code); \
777
dec_bitsleft -= nbits; \
778
} \
779
}
780
781
/*
782
* Decode a "hunk of data" for old images.
783
*/
784
#define GetNextCodeCompat(sp, bp, code) \
785
{ \
786
nextdata |= (unsigned long)*(bp)++ << nextbits; \
787
nextbits += 8; \
788
if (nextbits < nbits) \
789
{ \
790
nextdata |= (unsigned long)*(bp)++ << nextbits; \
791
nextbits += 8; \
792
} \
793
code = (hcode_t)(nextdata & nbitsmask); \
794
nextdata >>= nbits; \
795
nextbits -= nbits; \
796
}
797
798
static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s)
799
{
800
static const char module[] = "LZWDecodeCompat";
801
LZWCodecState *sp = LZWDecoderState(tif);
802
uint8_t *op = (uint8_t *)op0;
803
tmsize_t occ = occ0;
804
uint8_t *tp;
805
uint8_t *bp;
806
int code, nbits;
807
int len;
808
long nextbits, nbitsmask;
809
WordType nextdata;
810
code_t *codep, *free_entp, *maxcodep, *oldcodep;
811
812
(void)s;
813
assert(sp != NULL);
814
815
/*
816
* Restart interrupted output operation.
817
*/
818
if (sp->dec_restart)
819
{
820
tmsize_t residue;
821
822
codep = sp->dec_codep;
823
residue = codep->length - sp->dec_restart;
824
if (residue > occ)
825
{
826
/*
827
* Residue from previous decode is sufficient
828
* to satisfy decode request. Skip to the
829
* start of the decoded string, place decoded
830
* values in the output buffer, and return.
831
*/
832
sp->dec_restart += occ;
833
do
834
{
835
codep = codep->next;
836
} while (--residue > occ);
837
tp = op + occ;
838
do
839
{
840
*--tp = codep->value;
841
codep = codep->next;
842
} while (--occ);
843
return (1);
844
}
845
/*
846
* Residue satisfies only part of the decode request.
847
*/
848
op += residue;
849
occ -= residue;
850
tp = op;
851
do
852
{
853
*--tp = codep->value;
854
codep = codep->next;
855
} while (--residue);
856
sp->dec_restart = 0;
857
}
858
859
bp = (uint8_t *)tif->tif_rawcp;
860
861
sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3);
862
uint64_t dec_bitsleft = sp->dec_bitsleft;
863
864
nbits = sp->lzw_nbits;
865
nextdata = sp->lzw_nextdata;
866
nextbits = sp->lzw_nextbits;
867
nbitsmask = sp->dec_nbitsmask;
868
oldcodep = sp->dec_oldcodep;
869
free_entp = sp->dec_free_entp;
870
maxcodep = sp->dec_maxcodep;
871
872
while (occ > 0)
873
{
874
NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft);
875
if (code == CODE_EOI)
876
break;
877
if (code == CODE_CLEAR)
878
{
879
do
880
{
881
free_entp = sp->dec_codetab + CODE_FIRST;
882
_TIFFmemset(free_entp, 0,
883
(CSIZE - CODE_FIRST) * sizeof(code_t));
884
nbits = BITS_MIN;
885
nbitsmask = MAXCODE(BITS_MIN);
886
maxcodep = sp->dec_codetab + nbitsmask;
887
NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft);
888
} while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */
889
if (code == CODE_EOI)
890
break;
891
if (code > CODE_CLEAR)
892
{
893
TIFFErrorExtR(
894
tif, tif->tif_name,
895
"LZWDecode: Corrupted LZW table at scanline %" PRIu32,
896
tif->tif_row);
897
return (0);
898
}
899
*op++ = (uint8_t)code;
900
occ--;
901
oldcodep = sp->dec_codetab + code;
902
continue;
903
}
904
codep = sp->dec_codetab + code;
905
906
/*
907
* Add the new entry to the code table.
908
*/
909
if (free_entp < &sp->dec_codetab[0] ||
910
free_entp >= &sp->dec_codetab[CSIZE])
911
{
912
TIFFErrorExtR(tif, module,
913
"Corrupted LZW table at scanline %" PRIu32,
914
tif->tif_row);
915
return (0);
916
}
917
918
free_entp->next = oldcodep;
919
if (free_entp->next < &sp->dec_codetab[0] ||
920
free_entp->next >= &sp->dec_codetab[CSIZE])
921
{
922
TIFFErrorExtR(tif, module,
923
"Corrupted LZW table at scanline %" PRIu32,
924
tif->tif_row);
925
return (0);
926
}
927
free_entp->firstchar = free_entp->next->firstchar;
928
free_entp->length = free_entp->next->length + 1;
929
free_entp->value =
930
(codep < free_entp) ? codep->firstchar : free_entp->firstchar;
931
if (++free_entp > maxcodep)
932
{
933
if (++nbits > BITS_MAX) /* should not happen */
934
nbits = BITS_MAX;
935
nbitsmask = MAXCODE(nbits);
936
maxcodep = sp->dec_codetab + nbitsmask;
937
}
938
oldcodep = codep;
939
if (code >= 256)
940
{
941
/*
942
* Code maps to a string, copy string
943
* value to output (written in reverse).
944
*/
945
if (codep->length == 0)
946
{
947
TIFFErrorExtR(
948
tif, module,
949
"Wrong length of decoded "
950
"string: data probably corrupted at scanline %" PRIu32,
951
tif->tif_row);
952
return (0);
953
}
954
if (codep->length > occ)
955
{
956
/*
957
* String is too long for decode buffer,
958
* locate portion that will fit, copy to
959
* the decode buffer, and setup restart
960
* logic for the next decoding call.
961
*/
962
sp->dec_codep = codep;
963
do
964
{
965
codep = codep->next;
966
} while (codep->length > occ);
967
sp->dec_restart = occ;
968
tp = op + occ;
969
do
970
{
971
*--tp = codep->value;
972
codep = codep->next;
973
} while (--occ);
974
break;
975
}
976
len = codep->length;
977
tp = op + len;
978
do
979
{
980
*--tp = codep->value;
981
codep = codep->next;
982
} while (codep && tp > op);
983
assert(occ >= len);
984
op += len;
985
occ -= len;
986
}
987
else
988
{
989
*op++ = (uint8_t)code;
990
occ--;
991
}
992
}
993
994
tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp);
995
tif->tif_rawcp = (uint8_t *)bp;
996
997
sp->old_tif_rawcc = tif->tif_rawcc;
998
sp->dec_bitsleft = dec_bitsleft;
999
1000
sp->lzw_nbits = (unsigned short)nbits;
1001
sp->lzw_nextdata = nextdata;
1002
sp->lzw_nextbits = nextbits;
1003
sp->dec_nbitsmask = nbitsmask;
1004
sp->dec_oldcodep = oldcodep;
1005
sp->dec_free_entp = free_entp;
1006
sp->dec_maxcodep = maxcodep;
1007
1008
if (occ > 0)
1009
{
1010
TIFFErrorExtR(tif, module,
1011
"Not enough data at scanline %" PRIu32 " (short %" PRIu64
1012
" bytes)",
1013
tif->tif_row, (uint64_t)occ);
1014
return (0);
1015
}
1016
return (1);
1017
}
1018
#endif /* LZW_COMPAT */
1019
1020
/*
1021
* LZW Encoding.
1022
*/
1023
1024
static int LZWSetupEncode(TIFF *tif)
1025
{
1026
static const char module[] = "LZWSetupEncode";
1027
LZWCodecState *sp = LZWEncoderState(tif);
1028
1029
assert(sp != NULL);
1030
sp->enc_hashtab = (hash_t *)_TIFFmallocExt(tif, HSIZE * sizeof(hash_t));
1031
if (sp->enc_hashtab == NULL)
1032
{
1033
TIFFErrorExtR(tif, module, "No space for LZW hash table");
1034
return (0);
1035
}
1036
return (1);
1037
}
1038
1039
/*
1040
* Reset encoding state at the start of a strip.
1041
*/
1042
static int LZWPreEncode(TIFF *tif, uint16_t s)
1043
{
1044
LZWCodecState *sp = LZWEncoderState(tif);
1045
1046
(void)s;
1047
assert(sp != NULL);
1048
1049
if (sp->enc_hashtab == NULL)
1050
{
1051
tif->tif_setupencode(tif);
1052
}
1053
1054
sp->lzw_nbits = BITS_MIN;
1055
sp->lzw_maxcode = MAXCODE(BITS_MIN);
1056
sp->lzw_free_ent = CODE_FIRST;
1057
sp->lzw_nextbits = 0;
1058
sp->lzw_nextdata = 0;
1059
sp->enc_checkpoint = CHECK_GAP;
1060
sp->enc_ratio = 0;
1061
sp->enc_incount = 0;
1062
sp->enc_outcount = 0;
1063
/*
1064
* The 4 here insures there is space for 2 max-sized
1065
* codes in LZWEncode and LZWPostDecode.
1066
*/
1067
sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize - 1 - 4;
1068
cl_hash(sp); /* clear hash table */
1069
sp->enc_oldcode = (hcode_t)-1; /* generates CODE_CLEAR in LZWEncode */
1070
return (1);
1071
}
1072
1073
#define CALCRATIO(sp, rat) \
1074
{ \
1075
if (incount > 0x007fffff) \
1076
{ /* NB: shift will overflow */ \
1077
rat = outcount >> 8; \
1078
rat = (rat == 0 ? 0x7fffffff : incount / rat); \
1079
} \
1080
else \
1081
rat = (incount << 8) / outcount; \
1082
}
1083
1084
/* Explicit 0xff masking to make icc -check=conversions happy */
1085
#define PutNextCode(op, c) \
1086
{ \
1087
nextdata = (nextdata << nbits) | c; \
1088
nextbits += nbits; \
1089
*op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \
1090
nextbits -= 8; \
1091
if (nextbits >= 8) \
1092
{ \
1093
*op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \
1094
nextbits -= 8; \
1095
} \
1096
outcount += nbits; \
1097
}
1098
1099
/*
1100
* Encode a chunk of pixels.
1101
*
1102
* Uses an open addressing double hashing (no chaining) on the
1103
* prefix code/next character combination. We do a variant of
1104
* Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's
1105
* relatively-prime secondary probe. Here, the modular division
1106
* first probe is gives way to a faster exclusive-or manipulation.
1107
* Also do block compression with an adaptive reset, whereby the
1108
* code table is cleared when the compression ratio decreases,
1109
* but after the table fills. The variable-length output codes
1110
* are re-sized at this point, and a CODE_CLEAR is generated
1111
* for the decoder.
1112
*/
1113
static int LZWEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s)
1114
{
1115
register LZWCodecState *sp = LZWEncoderState(tif);
1116
register long fcode;
1117
register hash_t *hp;
1118
register int h, c;
1119
hcode_t ent;
1120
long disp;
1121
tmsize_t incount, outcount, checkpoint;
1122
WordType nextdata;
1123
long nextbits;
1124
int free_ent, maxcode, nbits;
1125
uint8_t *op;
1126
uint8_t *limit;
1127
1128
(void)s;
1129
if (sp == NULL)
1130
return (0);
1131
1132
assert(sp->enc_hashtab != NULL);
1133
1134
/*
1135
* Load local state.
1136
*/
1137
incount = sp->enc_incount;
1138
outcount = sp->enc_outcount;
1139
checkpoint = sp->enc_checkpoint;
1140
nextdata = sp->lzw_nextdata;
1141
nextbits = sp->lzw_nextbits;
1142
free_ent = sp->lzw_free_ent;
1143
maxcode = sp->lzw_maxcode;
1144
nbits = sp->lzw_nbits;
1145
op = tif->tif_rawcp;
1146
limit = sp->enc_rawlimit;
1147
ent = (hcode_t)sp->enc_oldcode;
1148
1149
if (ent == (hcode_t)-1 && cc > 0)
1150
{
1151
/*
1152
* NB: This is safe because it can only happen
1153
* at the start of a strip where we know there
1154
* is space in the data buffer.
1155
*/
1156
PutNextCode(op, CODE_CLEAR);
1157
ent = *bp++;
1158
cc--;
1159
incount++;
1160
}
1161
while (cc > 0)
1162
{
1163
c = *bp++;
1164
cc--;
1165
incount++;
1166
fcode = ((long)c << BITS_MAX) + ent;
1167
h = (c << HSHIFT) ^ ent; /* xor hashing */
1168
#ifdef _WINDOWS
1169
/*
1170
* Check hash index for an overflow.
1171
*/
1172
if (h >= HSIZE)
1173
h -= HSIZE;
1174
#endif
1175
hp = &sp->enc_hashtab[h];
1176
if (hp->hash == fcode)
1177
{
1178
ent = hp->code;
1179
continue;
1180
}
1181
if (hp->hash >= 0)
1182
{
1183
/*
1184
* Primary hash failed, check secondary hash.
1185
*/
1186
disp = HSIZE - h;
1187
if (h == 0)
1188
disp = 1;
1189
do
1190
{
1191
/*
1192
* Avoid pointer arithmetic because of
1193
* wraparound problems with segments.
1194
*/
1195
if ((h -= disp) < 0)
1196
h += HSIZE;
1197
hp = &sp->enc_hashtab[h];
1198
if (hp->hash == fcode)
1199
{
1200
ent = hp->code;
1201
goto hit;
1202
}
1203
} while (hp->hash >= 0);
1204
}
1205
/*
1206
* New entry, emit code and add to table.
1207
*/
1208
/*
1209
* Verify there is space in the buffer for the code
1210
* and any potential Clear code that might be emitted
1211
* below. The value of limit is setup so that there
1212
* are at least 4 bytes free--room for 2 codes.
1213
*/
1214
if (op > limit)
1215
{
1216
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1217
if (!TIFFFlushData1(tif))
1218
return 0;
1219
op = tif->tif_rawdata;
1220
}
1221
PutNextCode(op, ent);
1222
ent = (hcode_t)c;
1223
hp->code = (hcode_t)(free_ent++);
1224
hp->hash = fcode;
1225
if (free_ent == CODE_MAX - 1)
1226
{
1227
/* table is full, emit clear code and reset */
1228
cl_hash(sp);
1229
sp->enc_ratio = 0;
1230
incount = 0;
1231
outcount = 0;
1232
free_ent = CODE_FIRST;
1233
PutNextCode(op, CODE_CLEAR);
1234
nbits = BITS_MIN;
1235
maxcode = MAXCODE(BITS_MIN);
1236
}
1237
else
1238
{
1239
/*
1240
* If the next entry is going to be too big for
1241
* the code size, then increase it, if possible.
1242
*/
1243
if (free_ent > maxcode)
1244
{
1245
nbits++;
1246
assert(nbits <= BITS_MAX);
1247
maxcode = (int)MAXCODE(nbits);
1248
}
1249
else if (incount >= checkpoint)
1250
{
1251
tmsize_t rat;
1252
/*
1253
* Check compression ratio and, if things seem
1254
* to be slipping, clear the hash table and
1255
* reset state. The compression ratio is a
1256
* 24+8-bit fractional number.
1257
*/
1258
checkpoint = incount + CHECK_GAP;
1259
CALCRATIO(sp, rat);
1260
if (rat <= sp->enc_ratio)
1261
{
1262
cl_hash(sp);
1263
sp->enc_ratio = 0;
1264
incount = 0;
1265
outcount = 0;
1266
free_ent = CODE_FIRST;
1267
PutNextCode(op, CODE_CLEAR);
1268
nbits = BITS_MIN;
1269
maxcode = MAXCODE(BITS_MIN);
1270
}
1271
else
1272
sp->enc_ratio = rat;
1273
}
1274
}
1275
hit:;
1276
}
1277
1278
/*
1279
* Restore global state.
1280
*/
1281
sp->enc_incount = incount;
1282
sp->enc_outcount = outcount;
1283
sp->enc_checkpoint = checkpoint;
1284
sp->enc_oldcode = ent;
1285
sp->lzw_nextdata = nextdata;
1286
sp->lzw_nextbits = nextbits;
1287
sp->lzw_free_ent = (unsigned short)free_ent;
1288
sp->lzw_maxcode = (unsigned short)maxcode;
1289
sp->lzw_nbits = (unsigned short)nbits;
1290
tif->tif_rawcp = op;
1291
return (1);
1292
}
1293
1294
/*
1295
* Finish off an encoded strip by flushing the last
1296
* string and tacking on an End Of Information code.
1297
*/
1298
static int LZWPostEncode(TIFF *tif)
1299
{
1300
register LZWCodecState *sp = LZWEncoderState(tif);
1301
uint8_t *op = tif->tif_rawcp;
1302
long nextbits = sp->lzw_nextbits;
1303
WordType nextdata = sp->lzw_nextdata;
1304
tmsize_t outcount = sp->enc_outcount;
1305
int nbits = sp->lzw_nbits;
1306
1307
if (op > sp->enc_rawlimit)
1308
{
1309
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1310
if (!TIFFFlushData1(tif))
1311
return 0;
1312
op = tif->tif_rawdata;
1313
}
1314
if (sp->enc_oldcode != (hcode_t)-1)
1315
{
1316
int free_ent = sp->lzw_free_ent;
1317
1318
PutNextCode(op, sp->enc_oldcode);
1319
sp->enc_oldcode = (hcode_t)-1;
1320
free_ent++;
1321
1322
if (free_ent == CODE_MAX - 1)
1323
{
1324
/* table is full, emit clear code and reset */
1325
outcount = 0;
1326
PutNextCode(op, CODE_CLEAR);
1327
nbits = BITS_MIN;
1328
}
1329
else
1330
{
1331
/*
1332
* If the next entry is going to be too big for
1333
* the code size, then increase it, if possible.
1334
*/
1335
if (free_ent > sp->lzw_maxcode)
1336
{
1337
nbits++;
1338
assert(nbits <= BITS_MAX);
1339
}
1340
}
1341
}
1342
PutNextCode(op, CODE_EOI);
1343
/* Explicit 0xff masking to make icc -check=conversions happy */
1344
if (nextbits > 0)
1345
*op++ = (unsigned char)((nextdata << (8 - nextbits)) & 0xff);
1346
tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata);
1347
(void)outcount;
1348
return (1);
1349
}
1350
1351
/*
1352
* Reset encoding hash table.
1353
*/
1354
static void cl_hash(LZWCodecState *sp)
1355
{
1356
register hash_t *hp = &sp->enc_hashtab[HSIZE - 1];
1357
register long i = HSIZE - 8;
1358
1359
do
1360
{
1361
i -= 8;
1362
hp[-7].hash = -1;
1363
hp[-6].hash = -1;
1364
hp[-5].hash = -1;
1365
hp[-4].hash = -1;
1366
hp[-3].hash = -1;
1367
hp[-2].hash = -1;
1368
hp[-1].hash = -1;
1369
hp[0].hash = -1;
1370
hp -= 8;
1371
} while (i >= 0);
1372
for (i += 8; i > 0; i--, hp--)
1373
hp->hash = -1;
1374
}
1375
1376
static void LZWCleanup(TIFF *tif)
1377
{
1378
(void)TIFFPredictorCleanup(tif);
1379
1380
assert(tif->tif_data != 0);
1381
1382
if (LZWDecoderState(tif)->dec_codetab)
1383
_TIFFfreeExt(tif, LZWDecoderState(tif)->dec_codetab);
1384
1385
if (LZWEncoderState(tif)->enc_hashtab)
1386
_TIFFfreeExt(tif, LZWEncoderState(tif)->enc_hashtab);
1387
1388
_TIFFfreeExt(tif, tif->tif_data);
1389
tif->tif_data = NULL;
1390
1391
_TIFFSetDefaultCompressionState(tif);
1392
}
1393
1394
int TIFFInitLZW(TIFF *tif, int scheme)
1395
{
1396
static const char module[] = "TIFFInitLZW";
1397
(void)scheme;
1398
assert(scheme == COMPRESSION_LZW);
1399
/*
1400
* Allocate state block so tag methods have storage to record values.
1401
*/
1402
tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState));
1403
if (tif->tif_data == NULL)
1404
goto bad;
1405
LZWDecoderState(tif)->dec_codetab = NULL;
1406
LZWDecoderState(tif)->dec_decode = NULL;
1407
LZWEncoderState(tif)->enc_hashtab = NULL;
1408
LZWState(tif)->rw_mode = tif->tif_mode;
1409
1410
/*
1411
* Install codec methods.
1412
*/
1413
tif->tif_fixuptags = LZWFixupTags;
1414
tif->tif_setupdecode = LZWSetupDecode;
1415
tif->tif_predecode = LZWPreDecode;
1416
tif->tif_decoderow = LZWDecode;
1417
tif->tif_decodestrip = LZWDecode;
1418
tif->tif_decodetile = LZWDecode;
1419
tif->tif_setupencode = LZWSetupEncode;
1420
tif->tif_preencode = LZWPreEncode;
1421
tif->tif_postencode = LZWPostEncode;
1422
tif->tif_encoderow = LZWEncode;
1423
tif->tif_encodestrip = LZWEncode;
1424
tif->tif_encodetile = LZWEncode;
1425
tif->tif_cleanup = LZWCleanup;
1426
/*
1427
* Setup predictor setup.
1428
*/
1429
(void)TIFFPredictorInit(tif);
1430
return (1);
1431
bad:
1432
TIFFErrorExtR(tif, module, "No space for LZW state block");
1433
return (0);
1434
}
1435
1436
/*
1437
* Copyright (c) 1985, 1986 The Regents of the University of California.
1438
* All rights reserved.
1439
*
1440
* This code is derived from software contributed to Berkeley by
1441
* James A. Woods, derived from original work by Spencer Thomas
1442
* and Joseph Orost.
1443
*
1444
* Redistribution and use in source and binary forms are permitted
1445
* provided that the above copyright notice and this paragraph are
1446
* duplicated in all such forms and that any documentation,
1447
* advertising materials, and other materials related to such
1448
* distribution and use acknowledge that the software was developed
1449
* by the University of California, Berkeley. The name of the
1450
* University may not be used to endorse or promote products derived
1451
* from this software without specific prior written permission.
1452
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
1453
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
1454
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1455
*/
1456
#endif /* LZW_SUPPORT */
1457
1458