Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/tomcrypt/src/ciphers/aes/aes.c
5972 views
1
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2
*
3
* LibTomCrypt is a library that provides various cryptographic
4
* algorithms in a highly modular and flexible manner.
5
*
6
* The library is free for all purposes without any express
7
* guarantee it works.
8
*/
9
10
/* AES implementation by Tom St Denis
11
*
12
* Derived from the Public Domain source code by
13
14
---
15
* rijndael-alg-fst.c
16
*
17
* @version 3.0 (December 2000)
18
*
19
* Optimised ANSI C code for the Rijndael cipher (now AES)
20
*
21
* @author Vincent Rijmen <[email protected]>
22
* @author Antoon Bosselaers <[email protected]>
23
* @author Paulo Barreto <[email protected]>
24
---
25
*/
26
/**
27
@file aes.c
28
Implementation of AES
29
*/
30
31
#include "tomcrypt.h"
32
33
#ifdef LTC_RIJNDAEL
34
35
#ifndef ENCRYPT_ONLY
36
37
#define SETUP rijndael_setup
38
#define ECB_ENC rijndael_ecb_encrypt
39
#define ECB_DEC rijndael_ecb_decrypt
40
#define ECB_DONE rijndael_done
41
#define ECB_TEST rijndael_test
42
#define ECB_KS rijndael_keysize
43
44
const struct ltc_cipher_descriptor rijndael_desc =
45
{
46
"rijndael",
47
6,
48
16, 32, 16, 10,
49
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
50
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
51
};
52
53
const struct ltc_cipher_descriptor aes_desc =
54
{
55
"aes",
56
6,
57
16, 32, 16, 10,
58
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
59
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
60
};
61
62
#else
63
64
#define SETUP rijndael_enc_setup
65
#define ECB_ENC rijndael_enc_ecb_encrypt
66
#define ECB_KS rijndael_enc_keysize
67
#define ECB_DONE rijndael_enc_done
68
69
const struct ltc_cipher_descriptor rijndael_enc_desc =
70
{
71
"rijndael",
72
6,
73
16, 32, 16, 10,
74
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
75
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
76
};
77
78
const struct ltc_cipher_descriptor aes_enc_desc =
79
{
80
"aes",
81
6,
82
16, 32, 16, 10,
83
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
84
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
85
};
86
87
#endif
88
89
#define __LTC_AES_TAB_C__
90
#include "aes_tab.c"
91
92
static ulong32 setup_mix(ulong32 temp)
93
{
94
return (Te4_3[byte(temp, 2)]) ^
95
(Te4_2[byte(temp, 1)]) ^
96
(Te4_1[byte(temp, 0)]) ^
97
(Te4_0[byte(temp, 3)]);
98
}
99
100
#ifndef ENCRYPT_ONLY
101
#ifdef LTC_SMALL_CODE
102
static ulong32 setup_mix2(ulong32 temp)
103
{
104
return Td0(255 & Te4[byte(temp, 3)]) ^
105
Td1(255 & Te4[byte(temp, 2)]) ^
106
Td2(255 & Te4[byte(temp, 1)]) ^
107
Td3(255 & Te4[byte(temp, 0)]);
108
}
109
#endif
110
#endif
111
112
/**
113
Initialize the AES (Rijndael) block cipher
114
@param key The symmetric key you wish to pass
115
@param keylen The key length in bytes
116
@param num_rounds The number of rounds desired (0 for default)
117
@param skey The key in as scheduled by this function.
118
@return CRYPT_OK if successful
119
*/
120
int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
121
{
122
int i;
123
ulong32 temp, *rk;
124
#ifndef ENCRYPT_ONLY
125
ulong32 *rrk;
126
#endif
127
LTC_ARGCHK(key != NULL);
128
LTC_ARGCHK(skey != NULL);
129
130
if (keylen != 16 && keylen != 24 && keylen != 32) {
131
return CRYPT_INVALID_KEYSIZE;
132
}
133
134
if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
135
return CRYPT_INVALID_ROUNDS;
136
}
137
138
skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
139
140
/* setup the forward key */
141
i = 0;
142
rk = skey->rijndael.eK;
143
LOAD32H(rk[0], key );
144
LOAD32H(rk[1], key + 4);
145
LOAD32H(rk[2], key + 8);
146
LOAD32H(rk[3], key + 12);
147
if (keylen == 16) {
148
for (;;) {
149
temp = rk[3];
150
rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
151
rk[5] = rk[1] ^ rk[4];
152
rk[6] = rk[2] ^ rk[5];
153
rk[7] = rk[3] ^ rk[6];
154
if (++i == 10) {
155
break;
156
}
157
rk += 4;
158
}
159
} else if (keylen == 24) {
160
LOAD32H(rk[4], key + 16);
161
LOAD32H(rk[5], key + 20);
162
for (;;) {
163
#ifdef _MSC_VER
164
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
165
#else
166
temp = rk[5];
167
#endif
168
rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
169
rk[ 7] = rk[ 1] ^ rk[ 6];
170
rk[ 8] = rk[ 2] ^ rk[ 7];
171
rk[ 9] = rk[ 3] ^ rk[ 8];
172
if (++i == 8) {
173
break;
174
}
175
rk[10] = rk[ 4] ^ rk[ 9];
176
rk[11] = rk[ 5] ^ rk[10];
177
rk += 6;
178
}
179
} else if (keylen == 32) {
180
LOAD32H(rk[4], key + 16);
181
LOAD32H(rk[5], key + 20);
182
LOAD32H(rk[6], key + 24);
183
LOAD32H(rk[7], key + 28);
184
for (;;) {
185
#ifdef _MSC_VER
186
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
187
#else
188
temp = rk[7];
189
#endif
190
rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
191
rk[ 9] = rk[ 1] ^ rk[ 8];
192
rk[10] = rk[ 2] ^ rk[ 9];
193
rk[11] = rk[ 3] ^ rk[10];
194
if (++i == 7) {
195
break;
196
}
197
temp = rk[11];
198
rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
199
rk[13] = rk[ 5] ^ rk[12];
200
rk[14] = rk[ 6] ^ rk[13];
201
rk[15] = rk[ 7] ^ rk[14];
202
rk += 8;
203
}
204
} else {
205
/* this can't happen */
206
/* coverity[dead_error_line] */
207
return CRYPT_ERROR;
208
}
209
210
#ifndef ENCRYPT_ONLY
211
/* setup the inverse key now */
212
rk = skey->rijndael.dK;
213
rrk = skey->rijndael.eK + (28 + keylen) - 4;
214
215
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
216
/* copy first */
217
*rk++ = *rrk++;
218
*rk++ = *rrk++;
219
*rk++ = *rrk++;
220
*rk = *rrk;
221
rk -= 3; rrk -= 3;
222
223
for (i = 1; i < skey->rijndael.Nr; i++) {
224
rrk -= 4;
225
rk += 4;
226
#ifdef LTC_SMALL_CODE
227
temp = rrk[0];
228
rk[0] = setup_mix2(temp);
229
temp = rrk[1];
230
rk[1] = setup_mix2(temp);
231
temp = rrk[2];
232
rk[2] = setup_mix2(temp);
233
temp = rrk[3];
234
rk[3] = setup_mix2(temp);
235
#else
236
temp = rrk[0];
237
rk[0] =
238
Tks0[byte(temp, 3)] ^
239
Tks1[byte(temp, 2)] ^
240
Tks2[byte(temp, 1)] ^
241
Tks3[byte(temp, 0)];
242
temp = rrk[1];
243
rk[1] =
244
Tks0[byte(temp, 3)] ^
245
Tks1[byte(temp, 2)] ^
246
Tks2[byte(temp, 1)] ^
247
Tks3[byte(temp, 0)];
248
temp = rrk[2];
249
rk[2] =
250
Tks0[byte(temp, 3)] ^
251
Tks1[byte(temp, 2)] ^
252
Tks2[byte(temp, 1)] ^
253
Tks3[byte(temp, 0)];
254
temp = rrk[3];
255
rk[3] =
256
Tks0[byte(temp, 3)] ^
257
Tks1[byte(temp, 2)] ^
258
Tks2[byte(temp, 1)] ^
259
Tks3[byte(temp, 0)];
260
#endif
261
262
}
263
264
/* copy last */
265
rrk -= 4;
266
rk += 4;
267
*rk++ = *rrk++;
268
*rk++ = *rrk++;
269
*rk++ = *rrk++;
270
*rk = *rrk;
271
#endif /* ENCRYPT_ONLY */
272
273
return CRYPT_OK;
274
}
275
276
/**
277
Encrypts a block of text with AES
278
@param pt The input plaintext (16 bytes)
279
@param ct The output ciphertext (16 bytes)
280
@param skey The key as scheduled
281
@return CRYPT_OK if successful
282
*/
283
#ifdef LTC_CLEAN_STACK
284
static int _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
285
#else
286
int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
287
#endif
288
{
289
ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
290
int Nr, r;
291
292
LTC_ARGCHK(pt != NULL);
293
LTC_ARGCHK(ct != NULL);
294
LTC_ARGCHK(skey != NULL);
295
296
Nr = skey->rijndael.Nr;
297
rk = skey->rijndael.eK;
298
299
/*
300
* map byte array block to cipher state
301
* and add initial round key:
302
*/
303
LOAD32H(s0, pt ); s0 ^= rk[0];
304
LOAD32H(s1, pt + 4); s1 ^= rk[1];
305
LOAD32H(s2, pt + 8); s2 ^= rk[2];
306
LOAD32H(s3, pt + 12); s3 ^= rk[3];
307
308
#ifdef LTC_SMALL_CODE
309
310
for (r = 0; ; r++) {
311
rk += 4;
312
t0 =
313
Te0(byte(s0, 3)) ^
314
Te1(byte(s1, 2)) ^
315
Te2(byte(s2, 1)) ^
316
Te3(byte(s3, 0)) ^
317
rk[0];
318
t1 =
319
Te0(byte(s1, 3)) ^
320
Te1(byte(s2, 2)) ^
321
Te2(byte(s3, 1)) ^
322
Te3(byte(s0, 0)) ^
323
rk[1];
324
t2 =
325
Te0(byte(s2, 3)) ^
326
Te1(byte(s3, 2)) ^
327
Te2(byte(s0, 1)) ^
328
Te3(byte(s1, 0)) ^
329
rk[2];
330
t3 =
331
Te0(byte(s3, 3)) ^
332
Te1(byte(s0, 2)) ^
333
Te2(byte(s1, 1)) ^
334
Te3(byte(s2, 0)) ^
335
rk[3];
336
if (r == Nr-2) {
337
break;
338
}
339
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
340
}
341
rk += 4;
342
343
#else
344
345
/*
346
* Nr - 1 full rounds:
347
*/
348
r = Nr >> 1;
349
for (;;) {
350
t0 =
351
Te0(byte(s0, 3)) ^
352
Te1(byte(s1, 2)) ^
353
Te2(byte(s2, 1)) ^
354
Te3(byte(s3, 0)) ^
355
rk[4];
356
t1 =
357
Te0(byte(s1, 3)) ^
358
Te1(byte(s2, 2)) ^
359
Te2(byte(s3, 1)) ^
360
Te3(byte(s0, 0)) ^
361
rk[5];
362
t2 =
363
Te0(byte(s2, 3)) ^
364
Te1(byte(s3, 2)) ^
365
Te2(byte(s0, 1)) ^
366
Te3(byte(s1, 0)) ^
367
rk[6];
368
t3 =
369
Te0(byte(s3, 3)) ^
370
Te1(byte(s0, 2)) ^
371
Te2(byte(s1, 1)) ^
372
Te3(byte(s2, 0)) ^
373
rk[7];
374
375
rk += 8;
376
if (--r == 0) {
377
break;
378
}
379
380
s0 =
381
Te0(byte(t0, 3)) ^
382
Te1(byte(t1, 2)) ^
383
Te2(byte(t2, 1)) ^
384
Te3(byte(t3, 0)) ^
385
rk[0];
386
s1 =
387
Te0(byte(t1, 3)) ^
388
Te1(byte(t2, 2)) ^
389
Te2(byte(t3, 1)) ^
390
Te3(byte(t0, 0)) ^
391
rk[1];
392
s2 =
393
Te0(byte(t2, 3)) ^
394
Te1(byte(t3, 2)) ^
395
Te2(byte(t0, 1)) ^
396
Te3(byte(t1, 0)) ^
397
rk[2];
398
s3 =
399
Te0(byte(t3, 3)) ^
400
Te1(byte(t0, 2)) ^
401
Te2(byte(t1, 1)) ^
402
Te3(byte(t2, 0)) ^
403
rk[3];
404
}
405
406
#endif
407
408
/*
409
* apply last round and
410
* map cipher state to byte array block:
411
*/
412
s0 =
413
(Te4_3[byte(t0, 3)]) ^
414
(Te4_2[byte(t1, 2)]) ^
415
(Te4_1[byte(t2, 1)]) ^
416
(Te4_0[byte(t3, 0)]) ^
417
rk[0];
418
STORE32H(s0, ct);
419
s1 =
420
(Te4_3[byte(t1, 3)]) ^
421
(Te4_2[byte(t2, 2)]) ^
422
(Te4_1[byte(t3, 1)]) ^
423
(Te4_0[byte(t0, 0)]) ^
424
rk[1];
425
STORE32H(s1, ct+4);
426
s2 =
427
(Te4_3[byte(t2, 3)]) ^
428
(Te4_2[byte(t3, 2)]) ^
429
(Te4_1[byte(t0, 1)]) ^
430
(Te4_0[byte(t1, 0)]) ^
431
rk[2];
432
STORE32H(s2, ct+8);
433
s3 =
434
(Te4_3[byte(t3, 3)]) ^
435
(Te4_2[byte(t0, 2)]) ^
436
(Te4_1[byte(t1, 1)]) ^
437
(Te4_0[byte(t2, 0)]) ^
438
rk[3];
439
STORE32H(s3, ct+12);
440
441
return CRYPT_OK;
442
}
443
444
#ifdef LTC_CLEAN_STACK
445
int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
446
{
447
int err = _rijndael_ecb_encrypt(pt, ct, skey);
448
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
449
return err;
450
}
451
#endif
452
453
#ifndef ENCRYPT_ONLY
454
455
/**
456
Decrypts a block of text with AES
457
@param ct The input ciphertext (16 bytes)
458
@param pt The output plaintext (16 bytes)
459
@param skey The key as scheduled
460
@return CRYPT_OK if successful
461
*/
462
#ifdef LTC_CLEAN_STACK
463
static int _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
464
#else
465
int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
466
#endif
467
{
468
ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
469
int Nr, r;
470
471
LTC_ARGCHK(pt != NULL);
472
LTC_ARGCHK(ct != NULL);
473
LTC_ARGCHK(skey != NULL);
474
475
Nr = skey->rijndael.Nr;
476
rk = skey->rijndael.dK;
477
478
/*
479
* map byte array block to cipher state
480
* and add initial round key:
481
*/
482
LOAD32H(s0, ct ); s0 ^= rk[0];
483
LOAD32H(s1, ct + 4); s1 ^= rk[1];
484
LOAD32H(s2, ct + 8); s2 ^= rk[2];
485
LOAD32H(s3, ct + 12); s3 ^= rk[3];
486
487
#ifdef LTC_SMALL_CODE
488
for (r = 0; ; r++) {
489
rk += 4;
490
t0 =
491
Td0(byte(s0, 3)) ^
492
Td1(byte(s3, 2)) ^
493
Td2(byte(s2, 1)) ^
494
Td3(byte(s1, 0)) ^
495
rk[0];
496
t1 =
497
Td0(byte(s1, 3)) ^
498
Td1(byte(s0, 2)) ^
499
Td2(byte(s3, 1)) ^
500
Td3(byte(s2, 0)) ^
501
rk[1];
502
t2 =
503
Td0(byte(s2, 3)) ^
504
Td1(byte(s1, 2)) ^
505
Td2(byte(s0, 1)) ^
506
Td3(byte(s3, 0)) ^
507
rk[2];
508
t3 =
509
Td0(byte(s3, 3)) ^
510
Td1(byte(s2, 2)) ^
511
Td2(byte(s1, 1)) ^
512
Td3(byte(s0, 0)) ^
513
rk[3];
514
if (r == Nr-2) {
515
break;
516
}
517
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
518
}
519
rk += 4;
520
521
#else
522
523
/*
524
* Nr - 1 full rounds:
525
*/
526
r = Nr >> 1;
527
for (;;) {
528
529
t0 =
530
Td0(byte(s0, 3)) ^
531
Td1(byte(s3, 2)) ^
532
Td2(byte(s2, 1)) ^
533
Td3(byte(s1, 0)) ^
534
rk[4];
535
t1 =
536
Td0(byte(s1, 3)) ^
537
Td1(byte(s0, 2)) ^
538
Td2(byte(s3, 1)) ^
539
Td3(byte(s2, 0)) ^
540
rk[5];
541
t2 =
542
Td0(byte(s2, 3)) ^
543
Td1(byte(s1, 2)) ^
544
Td2(byte(s0, 1)) ^
545
Td3(byte(s3, 0)) ^
546
rk[6];
547
t3 =
548
Td0(byte(s3, 3)) ^
549
Td1(byte(s2, 2)) ^
550
Td2(byte(s1, 1)) ^
551
Td3(byte(s0, 0)) ^
552
rk[7];
553
554
rk += 8;
555
if (--r == 0) {
556
break;
557
}
558
559
560
s0 =
561
Td0(byte(t0, 3)) ^
562
Td1(byte(t3, 2)) ^
563
Td2(byte(t2, 1)) ^
564
Td3(byte(t1, 0)) ^
565
rk[0];
566
s1 =
567
Td0(byte(t1, 3)) ^
568
Td1(byte(t0, 2)) ^
569
Td2(byte(t3, 1)) ^
570
Td3(byte(t2, 0)) ^
571
rk[1];
572
s2 =
573
Td0(byte(t2, 3)) ^
574
Td1(byte(t1, 2)) ^
575
Td2(byte(t0, 1)) ^
576
Td3(byte(t3, 0)) ^
577
rk[2];
578
s3 =
579
Td0(byte(t3, 3)) ^
580
Td1(byte(t2, 2)) ^
581
Td2(byte(t1, 1)) ^
582
Td3(byte(t0, 0)) ^
583
rk[3];
584
}
585
#endif
586
587
/*
588
* apply last round and
589
* map cipher state to byte array block:
590
*/
591
s0 =
592
(Td4[byte(t0, 3)] & 0xff000000) ^
593
(Td4[byte(t3, 2)] & 0x00ff0000) ^
594
(Td4[byte(t2, 1)] & 0x0000ff00) ^
595
(Td4[byte(t1, 0)] & 0x000000ff) ^
596
rk[0];
597
STORE32H(s0, pt);
598
s1 =
599
(Td4[byte(t1, 3)] & 0xff000000) ^
600
(Td4[byte(t0, 2)] & 0x00ff0000) ^
601
(Td4[byte(t3, 1)] & 0x0000ff00) ^
602
(Td4[byte(t2, 0)] & 0x000000ff) ^
603
rk[1];
604
STORE32H(s1, pt+4);
605
s2 =
606
(Td4[byte(t2, 3)] & 0xff000000) ^
607
(Td4[byte(t1, 2)] & 0x00ff0000) ^
608
(Td4[byte(t0, 1)] & 0x0000ff00) ^
609
(Td4[byte(t3, 0)] & 0x000000ff) ^
610
rk[2];
611
STORE32H(s2, pt+8);
612
s3 =
613
(Td4[byte(t3, 3)] & 0xff000000) ^
614
(Td4[byte(t2, 2)] & 0x00ff0000) ^
615
(Td4[byte(t1, 1)] & 0x0000ff00) ^
616
(Td4[byte(t0, 0)] & 0x000000ff) ^
617
rk[3];
618
STORE32H(s3, pt+12);
619
620
return CRYPT_OK;
621
}
622
623
624
#ifdef LTC_CLEAN_STACK
625
int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
626
{
627
int err = _rijndael_ecb_decrypt(ct, pt, skey);
628
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
629
return err;
630
}
631
#endif
632
633
/**
634
Performs a self-test of the AES block cipher
635
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
636
*/
637
int ECB_TEST(void)
638
{
639
#ifndef LTC_TEST
640
return CRYPT_NOP;
641
#else
642
int err;
643
static const struct {
644
int keylen;
645
unsigned char key[32], pt[16], ct[16];
646
} tests[] = {
647
{ 16,
648
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
649
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
650
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
651
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
652
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
653
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
654
}, {
655
24,
656
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
657
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
658
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
659
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
660
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
661
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
662
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
663
}, {
664
32,
665
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
666
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
667
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
668
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
669
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
670
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
671
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
672
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
673
}
674
};
675
676
symmetric_key key;
677
unsigned char tmp[2][16];
678
int i, y;
679
680
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
681
zeromem(&key, sizeof(key));
682
if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
683
return err;
684
}
685
686
rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
687
rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
688
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
689
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
690
return CRYPT_FAIL_TESTVECTOR;
691
}
692
693
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
694
for (y = 0; y < 16; y++) tmp[0][y] = 0;
695
for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
696
for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
697
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
698
}
699
return CRYPT_OK;
700
#endif
701
}
702
703
#endif /* ENCRYPT_ONLY */
704
705
706
/** Terminate the context
707
@param skey The scheduled key
708
*/
709
void ECB_DONE(symmetric_key *skey)
710
{
711
LTC_UNUSED_PARAM(skey);
712
}
713
714
715
/**
716
Gets suitable key size
717
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
718
@return CRYPT_OK if the input key size is acceptable.
719
*/
720
int ECB_KS(int *keysize)
721
{
722
LTC_ARGCHK(keysize != NULL);
723
724
if (*keysize < 16)
725
return CRYPT_INVALID_KEYSIZE;
726
if (*keysize < 24) {
727
*keysize = 16;
728
return CRYPT_OK;
729
} else if (*keysize < 32) {
730
*keysize = 24;
731
return CRYPT_OK;
732
} else {
733
*keysize = 32;
734
return CRYPT_OK;
735
}
736
}
737
738
#endif
739
740