Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/tomcrypt/src/hashes/sha1.c
5971 views
1
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2
*
3
* LibTomCrypt is a library that provides various cryptographic
4
* algorithms in a highly modular and flexible manner.
5
*
6
* The library is free for all purposes without any express
7
* guarantee it works.
8
*/
9
#include "tomcrypt.h"
10
11
/**
12
@file sha1.c
13
LTC_SHA1 code by Tom St Denis
14
*/
15
16
17
#ifdef LTC_SHA1
18
19
const struct ltc_hash_descriptor sha1_desc =
20
{
21
"sha1",
22
2,
23
20,
24
64,
25
26
/* OID */
27
{ 1, 3, 14, 3, 2, 26, },
28
6,
29
30
&sha1_init,
31
&sha1_process,
32
&sha1_done,
33
&sha1_test,
34
NULL
35
};
36
37
#define F0(x,y,z) (z ^ (x & (y ^ z)))
38
#define F1(x,y,z) (x ^ y ^ z)
39
#define F2(x,y,z) ((x & y) | (z & (x | y)))
40
#define F3(x,y,z) (x ^ y ^ z)
41
42
#ifdef LTC_CLEAN_STACK
43
static int _sha1_compress(hash_state *md, unsigned char *buf)
44
#else
45
static int sha1_compress(hash_state *md, unsigned char *buf)
46
#endif
47
{
48
ulong32 a,b,c,d,e,W[80],i;
49
#ifdef LTC_SMALL_CODE
50
ulong32 t;
51
#endif
52
53
/* copy the state into 512-bits into W[0..15] */
54
for (i = 0; i < 16; i++) {
55
LOAD32H(W[i], buf + (4*i));
56
}
57
58
/* copy state */
59
a = md->sha1.state[0];
60
b = md->sha1.state[1];
61
c = md->sha1.state[2];
62
d = md->sha1.state[3];
63
e = md->sha1.state[4];
64
65
/* expand it */
66
for (i = 16; i < 80; i++) {
67
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
68
}
69
70
/* compress */
71
/* round one */
72
#define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
73
#define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
74
#define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
75
#define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
76
77
#ifdef LTC_SMALL_CODE
78
79
for (i = 0; i < 20; ) {
80
FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
81
}
82
83
for (; i < 40; ) {
84
FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
85
}
86
87
for (; i < 60; ) {
88
FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
89
}
90
91
for (; i < 80; ) {
92
FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
93
}
94
95
#else
96
97
for (i = 0; i < 20; ) {
98
FF0(a,b,c,d,e,i++);
99
FF0(e,a,b,c,d,i++);
100
FF0(d,e,a,b,c,i++);
101
FF0(c,d,e,a,b,i++);
102
FF0(b,c,d,e,a,i++);
103
}
104
105
/* round two */
106
for (; i < 40; ) {
107
FF1(a,b,c,d,e,i++);
108
FF1(e,a,b,c,d,i++);
109
FF1(d,e,a,b,c,i++);
110
FF1(c,d,e,a,b,i++);
111
FF1(b,c,d,e,a,i++);
112
}
113
114
/* round three */
115
for (; i < 60; ) {
116
FF2(a,b,c,d,e,i++);
117
FF2(e,a,b,c,d,i++);
118
FF2(d,e,a,b,c,i++);
119
FF2(c,d,e,a,b,i++);
120
FF2(b,c,d,e,a,i++);
121
}
122
123
/* round four */
124
for (; i < 80; ) {
125
FF3(a,b,c,d,e,i++);
126
FF3(e,a,b,c,d,i++);
127
FF3(d,e,a,b,c,i++);
128
FF3(c,d,e,a,b,i++);
129
FF3(b,c,d,e,a,i++);
130
}
131
#endif
132
133
#undef FF0
134
#undef FF1
135
#undef FF2
136
#undef FF3
137
138
/* store */
139
md->sha1.state[0] = md->sha1.state[0] + a;
140
md->sha1.state[1] = md->sha1.state[1] + b;
141
md->sha1.state[2] = md->sha1.state[2] + c;
142
md->sha1.state[3] = md->sha1.state[3] + d;
143
md->sha1.state[4] = md->sha1.state[4] + e;
144
145
return CRYPT_OK;
146
}
147
148
#ifdef LTC_CLEAN_STACK
149
static int sha1_compress(hash_state *md, unsigned char *buf)
150
{
151
int err;
152
err = _sha1_compress(md, buf);
153
burn_stack(sizeof(ulong32) * 87);
154
return err;
155
}
156
#endif
157
158
/**
159
Initialize the hash state
160
@param md The hash state you wish to initialize
161
@return CRYPT_OK if successful
162
*/
163
int sha1_init(hash_state * md)
164
{
165
LTC_ARGCHK(md != NULL);
166
md->sha1.state[0] = 0x67452301UL;
167
md->sha1.state[1] = 0xefcdab89UL;
168
md->sha1.state[2] = 0x98badcfeUL;
169
md->sha1.state[3] = 0x10325476UL;
170
md->sha1.state[4] = 0xc3d2e1f0UL;
171
md->sha1.curlen = 0;
172
md->sha1.length = 0;
173
return CRYPT_OK;
174
}
175
176
/**
177
Process a block of memory though the hash
178
@param md The hash state
179
@param in The data to hash
180
@param inlen The length of the data (octets)
181
@return CRYPT_OK if successful
182
*/
183
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
184
185
/**
186
Terminate the hash to get the digest
187
@param md The hash state
188
@param out [out] The destination of the hash (20 bytes)
189
@return CRYPT_OK if successful
190
*/
191
int sha1_done(hash_state * md, unsigned char *out)
192
{
193
int i;
194
195
LTC_ARGCHK(md != NULL);
196
LTC_ARGCHK(out != NULL);
197
198
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
199
return CRYPT_INVALID_ARG;
200
}
201
202
/* increase the length of the message */
203
md->sha1.length += md->sha1.curlen * 8;
204
205
/* append the '1' bit */
206
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
207
208
/* if the length is currently above 56 bytes we append zeros
209
* then compress. Then we can fall back to padding zeros and length
210
* encoding like normal.
211
*/
212
if (md->sha1.curlen > 56) {
213
while (md->sha1.curlen < 64) {
214
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
215
}
216
sha1_compress(md, md->sha1.buf);
217
md->sha1.curlen = 0;
218
}
219
220
/* pad upto 56 bytes of zeroes */
221
while (md->sha1.curlen < 56) {
222
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
223
}
224
225
/* store length */
226
STORE64H(md->sha1.length, md->sha1.buf+56);
227
sha1_compress(md, md->sha1.buf);
228
229
/* copy output */
230
for (i = 0; i < 5; i++) {
231
STORE32H(md->sha1.state[i], out+(4*i));
232
}
233
#ifdef LTC_CLEAN_STACK
234
zeromem(md, sizeof(hash_state));
235
#endif
236
return CRYPT_OK;
237
}
238
239
/**
240
Self-test the hash
241
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
242
*/
243
int sha1_test(void)
244
{
245
#ifndef LTC_TEST
246
return CRYPT_NOP;
247
#else
248
static const struct {
249
const char *msg;
250
unsigned char hash[20];
251
} tests[] = {
252
{ "abc",
253
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
254
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
255
0x9c, 0xd0, 0xd8, 0x9d }
256
},
257
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
258
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
259
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
260
0xE5, 0x46, 0x70, 0xF1 }
261
}
262
};
263
264
int i;
265
unsigned char tmp[20];
266
hash_state md;
267
268
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
269
sha1_init(&md);
270
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
271
sha1_done(&md, tmp);
272
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA1", i)) {
273
return CRYPT_FAIL_TESTVECTOR;
274
}
275
}
276
return CRYPT_OK;
277
#endif
278
}
279
280
#endif
281
282