Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/tomcrypt/src/hashes/sha2/sha256.c
5972 views
1
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2
*
3
* LibTomCrypt is a library that provides various cryptographic
4
* algorithms in a highly modular and flexible manner.
5
*
6
* The library is free for all purposes without any express
7
* guarantee it works.
8
*/
9
#include "tomcrypt.h"
10
11
/**
12
@file sha256.c
13
LTC_SHA256 by Tom St Denis
14
*/
15
16
#ifdef LTC_SHA256
17
18
const struct ltc_hash_descriptor sha256_desc =
19
{
20
"sha256",
21
0,
22
32,
23
64,
24
25
/* OID */
26
{ 2, 16, 840, 1, 101, 3, 4, 2, 1, },
27
9,
28
29
&sha256_init,
30
&sha256_process,
31
&sha256_done,
32
&sha256_test,
33
NULL
34
};
35
36
#ifdef LTC_SMALL_CODE
37
/* the K array */
38
static const ulong32 K[64] = {
39
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
40
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
41
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
42
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
43
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
44
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
45
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
46
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
47
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
48
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
49
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
50
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
51
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
52
};
53
#endif
54
55
/* Various logical functions */
56
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
57
#define Maj(x,y,z) (((x | y) & z) | (x & y))
58
#define S(x, n) RORc((x),(n))
59
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
60
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
61
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
62
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
63
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
64
65
/* compress 512-bits */
66
#ifdef LTC_CLEAN_STACK
67
static int _sha256_compress(hash_state * md, unsigned char *buf)
68
#else
69
static int sha256_compress(hash_state * md, unsigned char *buf)
70
#endif
71
{
72
ulong32 S[8], W[64], t0, t1;
73
#ifdef LTC_SMALL_CODE
74
ulong32 t;
75
#endif
76
int i;
77
78
/* copy state into S */
79
for (i = 0; i < 8; i++) {
80
S[i] = md->sha256.state[i];
81
}
82
83
/* copy the state into 512-bits into W[0..15] */
84
for (i = 0; i < 16; i++) {
85
LOAD32H(W[i], buf + (4*i));
86
}
87
88
/* fill W[16..63] */
89
for (i = 16; i < 64; i++) {
90
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
91
}
92
93
/* Compress */
94
#ifdef LTC_SMALL_CODE
95
#define RND(a,b,c,d,e,f,g,h,i) \
96
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
97
t1 = Sigma0(a) + Maj(a, b, c); \
98
d += t0; \
99
h = t0 + t1;
100
101
for (i = 0; i < 64; ++i) {
102
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
103
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
104
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
105
}
106
#else
107
#define RND(a,b,c,d,e,f,g,h,i,ki) \
108
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
109
t1 = Sigma0(a) + Maj(a, b, c); \
110
d += t0; \
111
h = t0 + t1;
112
113
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
114
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
115
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
116
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
117
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
118
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
119
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
120
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
121
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
122
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
123
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
124
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
125
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
126
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
127
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
128
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
129
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
130
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
131
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
132
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
133
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
134
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
135
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
136
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
137
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
138
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
139
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
140
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
141
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
142
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
143
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
144
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
145
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
146
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
147
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
148
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
149
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
150
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
151
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
152
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
153
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
154
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
155
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
156
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
157
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
158
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
159
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
160
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
161
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
162
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
163
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
164
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
165
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
166
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
167
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
168
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
169
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
170
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
171
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
172
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
173
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
174
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
175
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
176
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
177
178
#undef RND
179
180
#endif
181
182
/* feedback */
183
for (i = 0; i < 8; i++) {
184
md->sha256.state[i] = md->sha256.state[i] + S[i];
185
}
186
return CRYPT_OK;
187
}
188
189
#ifdef LTC_CLEAN_STACK
190
static int sha256_compress(hash_state * md, unsigned char *buf)
191
{
192
int err;
193
err = _sha256_compress(md, buf);
194
burn_stack(sizeof(ulong32) * 74);
195
return err;
196
}
197
#endif
198
199
/**
200
Initialize the hash state
201
@param md The hash state you wish to initialize
202
@return CRYPT_OK if successful
203
*/
204
int sha256_init(hash_state * md)
205
{
206
LTC_ARGCHK(md != NULL);
207
208
md->sha256.curlen = 0;
209
md->sha256.length = 0;
210
md->sha256.state[0] = 0x6A09E667UL;
211
md->sha256.state[1] = 0xBB67AE85UL;
212
md->sha256.state[2] = 0x3C6EF372UL;
213
md->sha256.state[3] = 0xA54FF53AUL;
214
md->sha256.state[4] = 0x510E527FUL;
215
md->sha256.state[5] = 0x9B05688CUL;
216
md->sha256.state[6] = 0x1F83D9ABUL;
217
md->sha256.state[7] = 0x5BE0CD19UL;
218
return CRYPT_OK;
219
}
220
221
/**
222
Process a block of memory though the hash
223
@param md The hash state
224
@param in The data to hash
225
@param inlen The length of the data (octets)
226
@return CRYPT_OK if successful
227
*/
228
HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
229
230
/**
231
Terminate the hash to get the digest
232
@param md The hash state
233
@param out [out] The destination of the hash (32 bytes)
234
@return CRYPT_OK if successful
235
*/
236
int sha256_done(hash_state * md, unsigned char *out)
237
{
238
int i;
239
240
LTC_ARGCHK(md != NULL);
241
LTC_ARGCHK(out != NULL);
242
243
if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
244
return CRYPT_INVALID_ARG;
245
}
246
247
248
/* increase the length of the message */
249
md->sha256.length += md->sha256.curlen * 8;
250
251
/* append the '1' bit */
252
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
253
254
/* if the length is currently above 56 bytes we append zeros
255
* then compress. Then we can fall back to padding zeros and length
256
* encoding like normal.
257
*/
258
if (md->sha256.curlen > 56) {
259
while (md->sha256.curlen < 64) {
260
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
261
}
262
sha256_compress(md, md->sha256.buf);
263
md->sha256.curlen = 0;
264
}
265
266
/* pad upto 56 bytes of zeroes */
267
while (md->sha256.curlen < 56) {
268
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
269
}
270
271
/* store length */
272
STORE64H(md->sha256.length, md->sha256.buf+56);
273
sha256_compress(md, md->sha256.buf);
274
275
/* copy output */
276
for (i = 0; i < 8; i++) {
277
STORE32H(md->sha256.state[i], out+(4*i));
278
}
279
#ifdef LTC_CLEAN_STACK
280
zeromem(md, sizeof(hash_state));
281
#endif
282
return CRYPT_OK;
283
}
284
285
/**
286
Self-test the hash
287
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
288
*/
289
int sha256_test(void)
290
{
291
#ifndef LTC_TEST
292
return CRYPT_NOP;
293
#else
294
static const struct {
295
const char *msg;
296
unsigned char hash[32];
297
} tests[] = {
298
{ "abc",
299
{ 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
300
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
301
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
302
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
303
},
304
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
305
{ 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
306
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
307
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
308
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
309
},
310
};
311
312
int i;
313
unsigned char tmp[32];
314
hash_state md;
315
316
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
317
sha256_init(&md);
318
sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
319
sha256_done(&md, tmp);
320
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA256", i)) {
321
return CRYPT_FAIL_TESTVECTOR;
322
}
323
}
324
return CRYPT_OK;
325
#endif
326
}
327
328
#endif
329
330