Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/xml2/timsort.h
4389 views
1
/*
2
* Taken from https://github.com/swenson/sort
3
* Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
4
* Removed all code unrelated to Timsort and made minor adjustments for
5
* cross-platform compatibility.
6
*/
7
8
/*
9
* The MIT License (MIT)
10
*
11
* Copyright (c) 2010-2017 Christopher Swenson.
12
* Copyright (c) 2012 Vojtech Fried.
13
* Copyright (c) 2012 Google Inc. All Rights Reserved.
14
*
15
* Permission is hereby granted, free of charge, to any person obtaining a
16
* copy of this software and associated documentation files (the "Software"),
17
* to deal in the Software without restriction, including without limitation
18
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
19
* and/or sell copies of the Software, and to permit persons to whom the
20
* Software is furnished to do so, subject to the following conditions:
21
*
22
* The above copyright notice and this permission notice shall be included in
23
* all copies or substantial portions of the Software.
24
*
25
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
26
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
27
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
28
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
29
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
30
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
31
* DEALINGS IN THE SOFTWARE.
32
*/
33
34
#include <stdlib.h>
35
#include <stdio.h>
36
#include <string.h>
37
#ifdef HAVE_STDINT_H
38
#include <stdint.h>
39
#elif defined(_WIN32)
40
typedef unsigned __int64 uint64_t;
41
#endif
42
43
#ifndef SORT_NAME
44
#error "Must declare SORT_NAME"
45
#endif
46
47
#ifndef SORT_TYPE
48
#error "Must declare SORT_TYPE"
49
#endif
50
51
#ifndef SORT_CMP
52
#define SORT_CMP(x, y) ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
53
#endif
54
55
#ifndef TIM_SORT_STACK_SIZE
56
#define TIM_SORT_STACK_SIZE 128
57
#endif
58
59
#define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
60
61
62
/* Common, type-agnostic functions and constants that we don't want to declare twice. */
63
#ifndef SORT_COMMON_H
64
#define SORT_COMMON_H
65
66
#ifndef MAX
67
#define MAX(x,y) (((x) > (y) ? (x) : (y)))
68
#endif
69
70
#ifndef MIN
71
#define MIN(x,y) (((x) < (y) ? (x) : (y)))
72
#endif
73
74
static int compute_minrun(const uint64_t);
75
76
#ifndef CLZ
77
#if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
78
#define CLZ __builtin_clzll
79
#else
80
81
static int clzll(uint64_t);
82
83
/* adapted from Hacker's Delight */
84
static int clzll(uint64_t x) {
85
int n;
86
87
if (x == 0) {
88
return 64;
89
}
90
91
n = 0;
92
93
if (x <= 0x00000000FFFFFFFFL) {
94
n = n + 32;
95
x = x << 32;
96
}
97
98
if (x <= 0x0000FFFFFFFFFFFFL) {
99
n = n + 16;
100
x = x << 16;
101
}
102
103
if (x <= 0x00FFFFFFFFFFFFFFL) {
104
n = n + 8;
105
x = x << 8;
106
}
107
108
if (x <= 0x0FFFFFFFFFFFFFFFL) {
109
n = n + 4;
110
x = x << 4;
111
}
112
113
if (x <= 0x3FFFFFFFFFFFFFFFL) {
114
n = n + 2;
115
x = x << 2;
116
}
117
118
if (x <= 0x7FFFFFFFFFFFFFFFL) {
119
n = n + 1;
120
}
121
122
return n;
123
}
124
125
#define CLZ clzll
126
#endif
127
#endif
128
129
static __inline int compute_minrun(const uint64_t size) {
130
const int top_bit = 64 - CLZ(size);
131
const int shift = MAX(top_bit, 6) - 6;
132
const int minrun = size >> shift;
133
const uint64_t mask = (1ULL << shift) - 1;
134
135
if (mask & size) {
136
return minrun + 1;
137
}
138
139
return minrun;
140
}
141
142
#endif /* SORT_COMMON_H */
143
144
#define SORT_CONCAT(x, y) x ## _ ## y
145
#define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
146
#define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
147
148
#define BINARY_INSERTION_FIND SORT_MAKE_STR(binary_insertion_find)
149
#define BINARY_INSERTION_SORT_START SORT_MAKE_STR(binary_insertion_sort_start)
150
#define BINARY_INSERTION_SORT SORT_MAKE_STR(binary_insertion_sort)
151
#define REVERSE_ELEMENTS SORT_MAKE_STR(reverse_elements)
152
#define COUNT_RUN SORT_MAKE_STR(count_run)
153
#define CHECK_INVARIANT SORT_MAKE_STR(check_invariant)
154
#define TIM_SORT SORT_MAKE_STR(tim_sort)
155
#define TIM_SORT_RESIZE SORT_MAKE_STR(tim_sort_resize)
156
#define TIM_SORT_MERGE SORT_MAKE_STR(tim_sort_merge)
157
#define TIM_SORT_COLLAPSE SORT_MAKE_STR(tim_sort_collapse)
158
159
#ifndef MAX
160
#define MAX(x,y) (((x) > (y) ? (x) : (y)))
161
#endif
162
#ifndef MIN
163
#define MIN(x,y) (((x) < (y) ? (x) : (y)))
164
#endif
165
166
typedef struct {
167
size_t start;
168
size_t length;
169
} TIM_SORT_RUN_T;
170
171
172
void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
173
void TIM_SORT(SORT_TYPE *dst, const size_t size);
174
175
176
/* Function used to do a binary search for binary insertion sort */
177
static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
178
const size_t size) {
179
size_t l, c, r;
180
SORT_TYPE cx;
181
l = 0;
182
r = size - 1;
183
c = r >> 1;
184
185
/* check for out of bounds at the beginning. */
186
if (SORT_CMP(x, dst[0]) < 0) {
187
return 0;
188
} else if (SORT_CMP(x, dst[r]) > 0) {
189
return r;
190
}
191
192
cx = dst[c];
193
194
while (1) {
195
const int val = SORT_CMP(x, cx);
196
197
if (val < 0) {
198
if (c - l <= 1) {
199
return c;
200
}
201
202
r = c;
203
} else { /* allow = for stability. The binary search favors the right. */
204
if (r - c <= 1) {
205
return c + 1;
206
}
207
208
l = c;
209
}
210
211
c = l + ((r - l) >> 1);
212
cx = dst[c];
213
}
214
}
215
216
/* Binary insertion sort, but knowing that the first "start" entries are sorted. Used in timsort. */
217
static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
218
size_t i;
219
220
for (i = start; i < size; i++) {
221
size_t j;
222
SORT_TYPE x;
223
size_t location;
224
225
/* If this entry is already correct, just move along */
226
if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
227
continue;
228
}
229
230
/* Else we need to find the right place, shift everything over, and squeeze in */
231
x = dst[i];
232
location = BINARY_INSERTION_FIND(dst, x, i);
233
234
for (j = i - 1; j >= location; j--) {
235
dst[j + 1] = dst[j];
236
237
if (j == 0) { /* check edge case because j is unsigned */
238
break;
239
}
240
}
241
242
dst[location] = x;
243
}
244
}
245
246
/* Binary insertion sort */
247
void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
248
/* don't bother sorting an array of size <= 1 */
249
if (size <= 1) {
250
return;
251
}
252
253
BINARY_INSERTION_SORT_START(dst, 1, size);
254
}
255
256
/* timsort implementation, based on timsort.txt */
257
258
static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
259
while (1) {
260
if (start >= end) {
261
return;
262
}
263
264
SORT_SWAP(dst[start], dst[end]);
265
start++;
266
end--;
267
}
268
}
269
270
static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
271
size_t curr;
272
273
if (size - start == 1) {
274
return 1;
275
}
276
277
if (start >= size - 2) {
278
if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
279
SORT_SWAP(dst[size - 2], dst[size - 1]);
280
}
281
282
return 2;
283
}
284
285
curr = start + 2;
286
287
if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
288
/* increasing run */
289
while (1) {
290
if (curr == size - 1) {
291
break;
292
}
293
294
if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
295
break;
296
}
297
298
curr++;
299
}
300
301
return curr - start;
302
} else {
303
/* decreasing run */
304
while (1) {
305
if (curr == size - 1) {
306
break;
307
}
308
309
if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
310
break;
311
}
312
313
curr++;
314
}
315
316
/* reverse in-place */
317
REVERSE_ELEMENTS(dst, start, curr - 1);
318
return curr - start;
319
}
320
}
321
322
static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
323
size_t A, B, C;
324
325
if (stack_curr < 2) {
326
return 1;
327
}
328
329
if (stack_curr == 2) {
330
const size_t A1 = stack[stack_curr - 2].length;
331
const size_t B1 = stack[stack_curr - 1].length;
332
333
if (A1 <= B1) {
334
return 0;
335
}
336
337
return 1;
338
}
339
340
A = stack[stack_curr - 3].length;
341
B = stack[stack_curr - 2].length;
342
C = stack[stack_curr - 1].length;
343
344
if ((A <= B + C) || (B <= C)) {
345
return 0;
346
}
347
348
return 1;
349
}
350
351
typedef struct {
352
size_t alloc;
353
SORT_TYPE *storage;
354
} TEMP_STORAGE_T;
355
356
static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
357
if (store->alloc < new_size) {
358
SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
359
360
if (tempstore == NULL) {
361
fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
362
(unsigned long)(sizeof(SORT_TYPE) * new_size));
363
exit(1);
364
}
365
366
store->storage = tempstore;
367
store->alloc = new_size;
368
}
369
}
370
371
static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
372
TEMP_STORAGE_T *store) {
373
const size_t A = stack[stack_curr - 2].length;
374
const size_t B = stack[stack_curr - 1].length;
375
const size_t curr = stack[stack_curr - 2].start;
376
SORT_TYPE *storage;
377
size_t i, j, k;
378
TIM_SORT_RESIZE(store, MIN(A, B));
379
storage = store->storage;
380
381
/* left merge */
382
if (A < B) {
383
memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
384
i = 0;
385
j = curr + A;
386
387
for (k = curr; k < curr + A + B; k++) {
388
if ((i < A) && (j < curr + A + B)) {
389
if (SORT_CMP(storage[i], dst[j]) <= 0) {
390
dst[k] = storage[i++];
391
} else {
392
dst[k] = dst[j++];
393
}
394
} else if (i < A) {
395
dst[k] = storage[i++];
396
} else {
397
break;
398
}
399
}
400
} else {
401
/* right merge */
402
memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
403
i = B;
404
j = curr + A;
405
k = curr + A + B;
406
407
while (k > curr) {
408
k--;
409
if ((i > 0) && (j > curr)) {
410
if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
411
dst[k] = dst[--j];
412
} else {
413
dst[k] = storage[--i];
414
}
415
} else if (i > 0) {
416
dst[k] = storage[--i];
417
} else {
418
break;
419
}
420
}
421
}
422
}
423
424
static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
425
TEMP_STORAGE_T *store, const size_t size) {
426
while (1) {
427
size_t A, B, C, D;
428
int ABC, BCD, CD;
429
430
/* if the stack only has one thing on it, we are done with the collapse */
431
if (stack_curr <= 1) {
432
break;
433
}
434
435
/* if this is the last merge, just do it */
436
if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
437
TIM_SORT_MERGE(dst, stack, stack_curr, store);
438
stack[0].length += stack[1].length;
439
stack_curr--;
440
break;
441
}
442
/* check if the invariant is off for a stack of 2 elements */
443
else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
444
TIM_SORT_MERGE(dst, stack, stack_curr, store);
445
stack[0].length += stack[1].length;
446
stack_curr--;
447
break;
448
} else if (stack_curr == 2) {
449
break;
450
}
451
452
B = stack[stack_curr - 3].length;
453
C = stack[stack_curr - 2].length;
454
D = stack[stack_curr - 1].length;
455
456
if (stack_curr >= 4) {
457
A = stack[stack_curr - 4].length;
458
ABC = (A <= B + C);
459
} else {
460
ABC = 0;
461
}
462
463
BCD = (B <= C + D) || ABC;
464
CD = (C <= D);
465
466
/* Both invariants are good */
467
if (!BCD && !CD) {
468
break;
469
}
470
471
/* left merge */
472
if (BCD && !CD) {
473
TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
474
stack[stack_curr - 3].length += stack[stack_curr - 2].length;
475
stack[stack_curr - 2] = stack[stack_curr - 1];
476
stack_curr--;
477
} else {
478
/* right merge */
479
TIM_SORT_MERGE(dst, stack, stack_curr, store);
480
stack[stack_curr - 2].length += stack[stack_curr - 1].length;
481
stack_curr--;
482
}
483
}
484
485
return stack_curr;
486
}
487
488
static __inline int PUSH_NEXT(SORT_TYPE *dst,
489
const size_t size,
490
TEMP_STORAGE_T *store,
491
const size_t minrun,
492
TIM_SORT_RUN_T *run_stack,
493
size_t *stack_curr,
494
size_t *curr) {
495
size_t len = COUNT_RUN(dst, *curr, size);
496
size_t run = minrun;
497
498
if (run > size - *curr) {
499
run = size - *curr;
500
}
501
502
if (run > len) {
503
BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
504
len = run;
505
}
506
507
run_stack[*stack_curr].start = *curr;
508
run_stack[*stack_curr].length = len;
509
(*stack_curr)++;
510
*curr += len;
511
512
if (*curr == size) {
513
/* finish up */
514
while (*stack_curr > 1) {
515
TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
516
run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
517
(*stack_curr)--;
518
}
519
520
if (store->storage != NULL) {
521
free(store->storage);
522
store->storage = NULL;
523
}
524
525
return 0;
526
}
527
528
return 1;
529
}
530
531
void TIM_SORT(SORT_TYPE *dst, const size_t size) {
532
size_t minrun;
533
TEMP_STORAGE_T _store, *store;
534
TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
535
size_t stack_curr = 0;
536
size_t curr = 0;
537
538
/* don't bother sorting an array of size 1 */
539
if (size <= 1) {
540
return;
541
}
542
543
if (size < 64) {
544
BINARY_INSERTION_SORT(dst, size);
545
return;
546
}
547
548
/* compute the minimum run length */
549
minrun = compute_minrun(size);
550
/* temporary storage for merges */
551
store = &_store;
552
store->alloc = 0;
553
store->storage = NULL;
554
555
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
556
return;
557
}
558
559
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
560
return;
561
}
562
563
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
564
return;
565
}
566
567
while (1) {
568
if (!CHECK_INVARIANT(run_stack, stack_curr)) {
569
stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
570
continue;
571
}
572
573
if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
574
return;
575
}
576
}
577
}
578
579
#undef SORT_CONCAT
580
#undef SORT_MAKE_STR1
581
#undef SORT_MAKE_STR
582
#undef SORT_NAME
583
#undef SORT_TYPE
584
#undef SORT_CMP
585
#undef TEMP_STORAGE_T
586
#undef TIM_SORT_RUN_T
587
#undef PUSH_NEXT
588
#undef SORT_SWAP
589
#undef SORT_CONCAT
590
#undef SORT_MAKE_STR1
591
#undef SORT_MAKE_STR
592
#undef BINARY_INSERTION_FIND
593
#undef BINARY_INSERTION_SORT_START
594
#undef BINARY_INSERTION_SORT
595
#undef REVERSE_ELEMENTS
596
#undef COUNT_RUN
597
#undef TIM_SORT
598
#undef TIM_SORT_RESIZE
599
#undef TIM_SORT_COLLAPSE
600
#undef TIM_SORT_RUN_T
601
#undef TEMP_STORAGE_T
602
603