Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/zlib/crc32.c
4388 views
1
/* crc32.c -- compute the CRC-32 of a data stream
2
* Copyright (C) 1995-2022 Mark Adler
3
* For conditions of distribution and use, see copyright notice in zlib.h
4
*
5
* This interleaved implementation of a CRC makes use of pipelined multiple
6
* arithmetic-logic units, commonly found in modern CPU cores. It is due to
7
* Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
8
*/
9
10
/* @(#) $Id$ */
11
12
/*
13
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
14
protection on the static variables used to control the first-use generation
15
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
16
first call get_crc_table() to initialize the tables before allowing more than
17
one thread to use crc32().
18
19
MAKECRCH can be #defined to write out crc32.h. A main() routine is also
20
produced, so that this one source file can be compiled to an executable.
21
*/
22
23
#ifdef MAKECRCH
24
# include <stdio.h>
25
# ifndef DYNAMIC_CRC_TABLE
26
# define DYNAMIC_CRC_TABLE
27
# endif /* !DYNAMIC_CRC_TABLE */
28
#endif /* MAKECRCH */
29
30
#include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
31
32
/*
33
A CRC of a message is computed on N braids of words in the message, where
34
each word consists of W bytes (4 or 8). If N is 3, for example, then three
35
running sparse CRCs are calculated respectively on each braid, at these
36
indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
37
This is done starting at a word boundary, and continues until as many blocks
38
of N * W bytes as are available have been processed. The results are combined
39
into a single CRC at the end. For this code, N must be in the range 1..6 and
40
W must be 4 or 8. The upper limit on N can be increased if desired by adding
41
more #if blocks, extending the patterns apparent in the code. In addition,
42
crc32.h would need to be regenerated, if the maximum N value is increased.
43
44
N and W are chosen empirically by benchmarking the execution time on a given
45
processor. The choices for N and W below were based on testing on Intel Kaby
46
Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
47
Octeon II processors. The Intel, AMD, and ARM processors were all fastest
48
with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
49
They were all tested with either gcc or clang, all using the -O3 optimization
50
level. Your mileage may vary.
51
*/
52
53
/* Define N */
54
#ifdef Z_TESTN
55
# define N Z_TESTN
56
#else
57
# define N 5
58
#endif
59
#if N < 1 || N > 6
60
# error N must be in 1..6
61
#endif
62
63
/*
64
z_crc_t must be at least 32 bits. z_word_t must be at least as long as
65
z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
66
that bytes are eight bits.
67
*/
68
69
/*
70
Define W and the associated z_word_t type. If W is not defined, then a
71
braided calculation is not used, and the associated tables and code are not
72
compiled.
73
*/
74
#ifdef Z_TESTW
75
# if Z_TESTW-1 != -1
76
# define W Z_TESTW
77
# endif
78
#else
79
# ifdef MAKECRCH
80
# define W 8 /* required for MAKECRCH */
81
# else
82
# if defined(__x86_64__) || defined(__aarch64__)
83
# define W 8
84
# else
85
# define W 4
86
# endif
87
# endif
88
#endif
89
#ifdef W
90
# if W == 8 && defined(Z_U8)
91
typedef Z_U8 z_word_t;
92
# elif defined(Z_U4)
93
# undef W
94
# define W 4
95
typedef Z_U4 z_word_t;
96
# else
97
# undef W
98
# endif
99
#endif
100
101
/* If available, use the ARM processor CRC32 instruction. */
102
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
103
# define ARMCRC32
104
#endif
105
106
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
107
/*
108
Swap the bytes in a z_word_t to convert between little and big endian. Any
109
self-respecting compiler will optimize this to a single machine byte-swap
110
instruction, if one is available. This assumes that word_t is either 32 bits
111
or 64 bits.
112
*/
113
local z_word_t byte_swap(z_word_t word) {
114
# if W == 8
115
return
116
(word & 0xff00000000000000) >> 56 |
117
(word & 0xff000000000000) >> 40 |
118
(word & 0xff0000000000) >> 24 |
119
(word & 0xff00000000) >> 8 |
120
(word & 0xff000000) << 8 |
121
(word & 0xff0000) << 24 |
122
(word & 0xff00) << 40 |
123
(word & 0xff) << 56;
124
# else /* W == 4 */
125
return
126
(word & 0xff000000) >> 24 |
127
(word & 0xff0000) >> 8 |
128
(word & 0xff00) << 8 |
129
(word & 0xff) << 24;
130
# endif
131
}
132
#endif
133
134
#ifdef DYNAMIC_CRC_TABLE
135
/* =========================================================================
136
* Table of powers of x for combining CRC-32s, filled in by make_crc_table()
137
* below.
138
*/
139
local z_crc_t FAR x2n_table[32];
140
#else
141
/* =========================================================================
142
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers
143
* of x for combining CRC-32s, all made by make_crc_table().
144
*/
145
# include "crc32.h"
146
#endif
147
148
/* CRC polynomial. */
149
#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
150
151
/*
152
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
153
reflected. For speed, this requires that a not be zero.
154
*/
155
local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
156
z_crc_t m, p;
157
158
m = (z_crc_t)1 << 31;
159
p = 0;
160
for (;;) {
161
if (a & m) {
162
p ^= b;
163
if ((a & (m - 1)) == 0)
164
break;
165
}
166
m >>= 1;
167
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
168
}
169
return p;
170
}
171
172
/*
173
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
174
initialized.
175
*/
176
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
177
z_crc_t p;
178
179
p = (z_crc_t)1 << 31; /* x^0 == 1 */
180
while (n) {
181
if (n & 1)
182
p = multmodp(x2n_table[k & 31], p);
183
n >>= 1;
184
k++;
185
}
186
return p;
187
}
188
189
#ifdef DYNAMIC_CRC_TABLE
190
/* =========================================================================
191
* Build the tables for byte-wise and braided CRC-32 calculations, and a table
192
* of powers of x for combining CRC-32s.
193
*/
194
local z_crc_t FAR crc_table[256];
195
#ifdef W
196
local z_word_t FAR crc_big_table[256];
197
local z_crc_t FAR crc_braid_table[W][256];
198
local z_word_t FAR crc_braid_big_table[W][256];
199
local void braid(z_crc_t [][256], z_word_t [][256], int, int);
200
#endif
201
#ifdef MAKECRCH
202
local void write_table(FILE *, const z_crc_t FAR *, int);
203
local void write_table32hi(FILE *, const z_word_t FAR *, int);
204
local void write_table64(FILE *, const z_word_t FAR *, int);
205
#endif /* MAKECRCH */
206
207
/*
208
Define a once() function depending on the availability of atomics. If this is
209
compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
210
multiple threads, and if atomics are not available, then get_crc_table() must
211
be called to initialize the tables and must return before any threads are
212
allowed to compute or combine CRCs.
213
*/
214
215
/* Definition of once functionality. */
216
typedef struct once_s once_t;
217
218
/* Check for the availability of atomics. */
219
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
220
!defined(__STDC_NO_ATOMICS__)
221
222
#include <stdatomic.h>
223
224
/* Structure for once(), which must be initialized with ONCE_INIT. */
225
struct once_s {
226
atomic_flag begun;
227
atomic_int done;
228
};
229
#define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
230
231
/*
232
Run the provided init() function exactly once, even if multiple threads
233
invoke once() at the same time. The state must be a once_t initialized with
234
ONCE_INIT.
235
*/
236
local void once(once_t *state, void (*init)(void)) {
237
if (!atomic_load(&state->done)) {
238
if (atomic_flag_test_and_set(&state->begun))
239
while (!atomic_load(&state->done))
240
;
241
else {
242
init();
243
atomic_store(&state->done, 1);
244
}
245
}
246
}
247
248
#else /* no atomics */
249
250
/* Structure for once(), which must be initialized with ONCE_INIT. */
251
struct once_s {
252
volatile int begun;
253
volatile int done;
254
};
255
#define ONCE_INIT {0, 0}
256
257
/* Test and set. Alas, not atomic, but tries to minimize the period of
258
vulnerability. */
259
local int test_and_set(int volatile *flag) {
260
int was;
261
262
was = *flag;
263
*flag = 1;
264
return was;
265
}
266
267
/* Run the provided init() function once. This is not thread-safe. */
268
local void once(once_t *state, void (*init)(void)) {
269
if (!state->done) {
270
if (test_and_set(&state->begun))
271
while (!state->done)
272
;
273
else {
274
init();
275
state->done = 1;
276
}
277
}
278
}
279
280
#endif
281
282
/* State for once(). */
283
local once_t made = ONCE_INIT;
284
285
/*
286
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
287
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
288
289
Polynomials over GF(2) are represented in binary, one bit per coefficient,
290
with the lowest powers in the most significant bit. Then adding polynomials
291
is just exclusive-or, and multiplying a polynomial by x is a right shift by
292
one. If we call the above polynomial p, and represent a byte as the
293
polynomial q, also with the lowest power in the most significant bit (so the
294
byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
295
where a mod b means the remainder after dividing a by b.
296
297
This calculation is done using the shift-register method of multiplying and
298
taking the remainder. The register is initialized to zero, and for each
299
incoming bit, x^32 is added mod p to the register if the bit is a one (where
300
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
301
(which is shifting right by one and adding x^32 mod p if the bit shifted out
302
is a one). We start with the highest power (least significant bit) of q and
303
repeat for all eight bits of q.
304
305
The table is simply the CRC of all possible eight bit values. This is all the
306
information needed to generate CRCs on data a byte at a time for all
307
combinations of CRC register values and incoming bytes.
308
*/
309
310
local void make_crc_table(void) {
311
unsigned i, j, n;
312
z_crc_t p;
313
314
/* initialize the CRC of bytes tables */
315
for (i = 0; i < 256; i++) {
316
p = i;
317
for (j = 0; j < 8; j++)
318
p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
319
crc_table[i] = p;
320
#ifdef W
321
crc_big_table[i] = byte_swap(p);
322
#endif
323
}
324
325
/* initialize the x^2^n mod p(x) table */
326
p = (z_crc_t)1 << 30; /* x^1 */
327
x2n_table[0] = p;
328
for (n = 1; n < 32; n++)
329
x2n_table[n] = p = multmodp(p, p);
330
331
#ifdef W
332
/* initialize the braiding tables -- needs x2n_table[] */
333
braid(crc_braid_table, crc_braid_big_table, N, W);
334
#endif
335
336
#ifdef MAKECRCH
337
{
338
/*
339
The crc32.h header file contains tables for both 32-bit and 64-bit
340
z_word_t's, and so requires a 64-bit type be available. In that case,
341
z_word_t must be defined to be 64-bits. This code then also generates
342
and writes out the tables for the case that z_word_t is 32 bits.
343
*/
344
#if !defined(W) || W != 8
345
# error Need a 64-bit integer type in order to generate crc32.h.
346
#endif
347
FILE *out;
348
int k, n;
349
z_crc_t ltl[8][256];
350
z_word_t big[8][256];
351
352
out = fopen("crc32.h", "w");
353
if (out == NULL) return;
354
355
/* write out little-endian CRC table to crc32.h */
356
fprintf(out,
357
"/* crc32.h -- tables for rapid CRC calculation\n"
358
" * Generated automatically by crc32.c\n */\n"
359
"\n"
360
"local const z_crc_t FAR crc_table[] = {\n"
361
" ");
362
write_table(out, crc_table, 256);
363
fprintf(out,
364
"};\n");
365
366
/* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
367
fprintf(out,
368
"\n"
369
"#ifdef W\n"
370
"\n"
371
"#if W == 8\n"
372
"\n"
373
"local const z_word_t FAR crc_big_table[] = {\n"
374
" ");
375
write_table64(out, crc_big_table, 256);
376
fprintf(out,
377
"};\n");
378
379
/* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
380
fprintf(out,
381
"\n"
382
"#else /* W == 4 */\n"
383
"\n"
384
"local const z_word_t FAR crc_big_table[] = {\n"
385
" ");
386
write_table32hi(out, crc_big_table, 256);
387
fprintf(out,
388
"};\n"
389
"\n"
390
"#endif\n");
391
392
/* write out braid tables for each value of N */
393
for (n = 1; n <= 6; n++) {
394
fprintf(out,
395
"\n"
396
"#if N == %d\n", n);
397
398
/* compute braid tables for this N and 64-bit word_t */
399
braid(ltl, big, n, 8);
400
401
/* write out braid tables for 64-bit z_word_t to crc32.h */
402
fprintf(out,
403
"\n"
404
"#if W == 8\n"
405
"\n"
406
"local const z_crc_t FAR crc_braid_table[][256] = {\n");
407
for (k = 0; k < 8; k++) {
408
fprintf(out, " {");
409
write_table(out, ltl[k], 256);
410
fprintf(out, "}%s", k < 7 ? ",\n" : "");
411
}
412
fprintf(out,
413
"};\n"
414
"\n"
415
"local const z_word_t FAR crc_braid_big_table[][256] = {\n");
416
for (k = 0; k < 8; k++) {
417
fprintf(out, " {");
418
write_table64(out, big[k], 256);
419
fprintf(out, "}%s", k < 7 ? ",\n" : "");
420
}
421
fprintf(out,
422
"};\n");
423
424
/* compute braid tables for this N and 32-bit word_t */
425
braid(ltl, big, n, 4);
426
427
/* write out braid tables for 32-bit z_word_t to crc32.h */
428
fprintf(out,
429
"\n"
430
"#else /* W == 4 */\n"
431
"\n"
432
"local const z_crc_t FAR crc_braid_table[][256] = {\n");
433
for (k = 0; k < 4; k++) {
434
fprintf(out, " {");
435
write_table(out, ltl[k], 256);
436
fprintf(out, "}%s", k < 3 ? ",\n" : "");
437
}
438
fprintf(out,
439
"};\n"
440
"\n"
441
"local const z_word_t FAR crc_braid_big_table[][256] = {\n");
442
for (k = 0; k < 4; k++) {
443
fprintf(out, " {");
444
write_table32hi(out, big[k], 256);
445
fprintf(out, "}%s", k < 3 ? ",\n" : "");
446
}
447
fprintf(out,
448
"};\n"
449
"\n"
450
"#endif\n"
451
"\n"
452
"#endif\n");
453
}
454
fprintf(out,
455
"\n"
456
"#endif\n");
457
458
/* write out zeros operator table to crc32.h */
459
fprintf(out,
460
"\n"
461
"local const z_crc_t FAR x2n_table[] = {\n"
462
" ");
463
write_table(out, x2n_table, 32);
464
fprintf(out,
465
"};\n");
466
fclose(out);
467
}
468
#endif /* MAKECRCH */
469
}
470
471
#ifdef MAKECRCH
472
473
/*
474
Write the 32-bit values in table[0..k-1] to out, five per line in
475
hexadecimal separated by commas.
476
*/
477
local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
478
int n;
479
480
for (n = 0; n < k; n++)
481
fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
482
(unsigned long)(table[n]),
483
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
484
}
485
486
/*
487
Write the high 32-bits of each value in table[0..k-1] to out, five per line
488
in hexadecimal separated by commas.
489
*/
490
local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
491
int n;
492
493
for (n = 0; n < k; n++)
494
fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
495
(unsigned long)(table[n] >> 32),
496
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
497
}
498
499
/*
500
Write the 64-bit values in table[0..k-1] to out, three per line in
501
hexadecimal separated by commas. This assumes that if there is a 64-bit
502
type, then there is also a long long integer type, and it is at least 64
503
bits. If not, then the type cast and format string can be adjusted
504
accordingly.
505
*/
506
local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
507
int n;
508
509
for (n = 0; n < k; n++)
510
fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ",
511
(unsigned long long)(table[n]),
512
n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
513
}
514
515
/* Actually do the deed. */
516
int main(void) {
517
make_crc_table();
518
return 0;
519
}
520
521
#endif /* MAKECRCH */
522
523
#ifdef W
524
/*
525
Generate the little and big-endian braid tables for the given n and z_word_t
526
size w. Each array must have room for w blocks of 256 elements.
527
*/
528
local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
529
int k;
530
z_crc_t i, p, q;
531
for (k = 0; k < w; k++) {
532
p = x2nmodp((n * w + 3 - k) << 3, 0);
533
ltl[k][0] = 0;
534
big[w - 1 - k][0] = 0;
535
for (i = 1; i < 256; i++) {
536
ltl[k][i] = q = multmodp(i << 24, p);
537
big[w - 1 - k][i] = byte_swap(q);
538
}
539
}
540
}
541
#endif
542
543
#endif /* DYNAMIC_CRC_TABLE */
544
545
/* =========================================================================
546
* This function can be used by asm versions of crc32(), and to force the
547
* generation of the CRC tables in a threaded application.
548
*/
549
const z_crc_t FAR * ZEXPORT get_crc_table(void) {
550
#ifdef DYNAMIC_CRC_TABLE
551
once(&made, make_crc_table);
552
#endif /* DYNAMIC_CRC_TABLE */
553
return (const z_crc_t FAR *)crc_table;
554
}
555
556
/* =========================================================================
557
* Use ARM machine instructions if available. This will compute the CRC about
558
* ten times faster than the braided calculation. This code does not check for
559
* the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
560
* only be defined if the compilation specifies an ARM processor architecture
561
* that has the instructions. For example, compiling with -march=armv8.1-a or
562
* -march=armv8-a+crc, or -march=native if the compile machine has the crc32
563
* instructions.
564
*/
565
#ifdef ARMCRC32
566
567
/*
568
Constants empirically determined to maximize speed. These values are from
569
measurements on a Cortex-A57. Your mileage may vary.
570
*/
571
#define Z_BATCH 3990 /* number of words in a batch */
572
#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
573
#define Z_BATCH_MIN 800 /* fewest words in a final batch */
574
575
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
576
z_size_t len) {
577
z_crc_t val;
578
z_word_t crc1, crc2;
579
const z_word_t *word;
580
z_word_t val0, val1, val2;
581
z_size_t last, last2, i;
582
z_size_t num;
583
584
/* Return initial CRC, if requested. */
585
if (buf == Z_NULL) return 0;
586
587
#ifdef DYNAMIC_CRC_TABLE
588
once(&made, make_crc_table);
589
#endif /* DYNAMIC_CRC_TABLE */
590
591
/* Pre-condition the CRC */
592
crc = (~crc) & 0xffffffff;
593
594
/* Compute the CRC up to a word boundary. */
595
while (len && ((z_size_t)buf & 7) != 0) {
596
len--;
597
val = *buf++;
598
__asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
599
}
600
601
/* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
602
word = (z_word_t const *)buf;
603
num = len >> 3;
604
len &= 7;
605
606
/* Do three interleaved CRCs to realize the throughput of one crc32x
607
instruction per cycle. Each CRC is calculated on Z_BATCH words. The
608
three CRCs are combined into a single CRC after each set of batches. */
609
while (num >= 3 * Z_BATCH) {
610
crc1 = 0;
611
crc2 = 0;
612
for (i = 0; i < Z_BATCH; i++) {
613
val0 = word[i];
614
val1 = word[i + Z_BATCH];
615
val2 = word[i + 2 * Z_BATCH];
616
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
617
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
618
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
619
}
620
word += 3 * Z_BATCH;
621
num -= 3 * Z_BATCH;
622
crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
623
crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
624
}
625
626
/* Do one last smaller batch with the remaining words, if there are enough
627
to pay for the combination of CRCs. */
628
last = num / 3;
629
if (last >= Z_BATCH_MIN) {
630
last2 = last << 1;
631
crc1 = 0;
632
crc2 = 0;
633
for (i = 0; i < last; i++) {
634
val0 = word[i];
635
val1 = word[i + last];
636
val2 = word[i + last2];
637
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
638
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
639
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
640
}
641
word += 3 * last;
642
num -= 3 * last;
643
val = x2nmodp(last, 6);
644
crc = multmodp(val, crc) ^ crc1;
645
crc = multmodp(val, crc) ^ crc2;
646
}
647
648
/* Compute the CRC on any remaining words. */
649
for (i = 0; i < num; i++) {
650
val0 = word[i];
651
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
652
}
653
word += num;
654
655
/* Complete the CRC on any remaining bytes. */
656
buf = (const unsigned char FAR *)word;
657
while (len) {
658
len--;
659
val = *buf++;
660
__asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
661
}
662
663
/* Return the CRC, post-conditioned. */
664
return crc ^ 0xffffffff;
665
}
666
667
#else
668
669
#ifdef W
670
671
/*
672
Return the CRC of the W bytes in the word_t data, taking the
673
least-significant byte of the word as the first byte of data, without any pre
674
or post conditioning. This is used to combine the CRCs of each braid.
675
*/
676
local z_crc_t crc_word(z_word_t data) {
677
int k;
678
for (k = 0; k < W; k++)
679
data = (data >> 8) ^ crc_table[data & 0xff];
680
return (z_crc_t)data;
681
}
682
683
local z_word_t crc_word_big(z_word_t data) {
684
int k;
685
for (k = 0; k < W; k++)
686
data = (data << 8) ^
687
crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
688
return data;
689
}
690
691
#endif
692
693
/* ========================================================================= */
694
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
695
z_size_t len) {
696
/* Return initial CRC, if requested. */
697
if (buf == Z_NULL) return 0;
698
699
#ifdef DYNAMIC_CRC_TABLE
700
once(&made, make_crc_table);
701
#endif /* DYNAMIC_CRC_TABLE */
702
703
/* Pre-condition the CRC */
704
crc = (~crc) & 0xffffffff;
705
706
#ifdef W
707
708
/* If provided enough bytes, do a braided CRC calculation. */
709
if (len >= N * W + W - 1) {
710
z_size_t blks;
711
z_word_t const *words;
712
unsigned endian;
713
int k;
714
715
/* Compute the CRC up to a z_word_t boundary. */
716
while (len && ((z_size_t)buf & (W - 1)) != 0) {
717
len--;
718
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
719
}
720
721
/* Compute the CRC on as many N z_word_t blocks as are available. */
722
blks = len / (N * W);
723
len -= blks * N * W;
724
words = (z_word_t const *)buf;
725
726
/* Do endian check at execution time instead of compile time, since ARM
727
processors can change the endianness at execution time. If the
728
compiler knows what the endianness will be, it can optimize out the
729
check and the unused branch. */
730
endian = 1;
731
if (*(unsigned char *)&endian) {
732
/* Little endian. */
733
734
z_crc_t crc0;
735
z_word_t word0;
736
#if N > 1
737
z_crc_t crc1;
738
z_word_t word1;
739
#if N > 2
740
z_crc_t crc2;
741
z_word_t word2;
742
#if N > 3
743
z_crc_t crc3;
744
z_word_t word3;
745
#if N > 4
746
z_crc_t crc4;
747
z_word_t word4;
748
#if N > 5
749
z_crc_t crc5;
750
z_word_t word5;
751
#endif
752
#endif
753
#endif
754
#endif
755
#endif
756
757
/* Initialize the CRC for each braid. */
758
crc0 = crc;
759
#if N > 1
760
crc1 = 0;
761
#if N > 2
762
crc2 = 0;
763
#if N > 3
764
crc3 = 0;
765
#if N > 4
766
crc4 = 0;
767
#if N > 5
768
crc5 = 0;
769
#endif
770
#endif
771
#endif
772
#endif
773
#endif
774
775
/*
776
Process the first blks-1 blocks, computing the CRCs on each braid
777
independently.
778
*/
779
while (--blks) {
780
/* Load the word for each braid into registers. */
781
word0 = crc0 ^ words[0];
782
#if N > 1
783
word1 = crc1 ^ words[1];
784
#if N > 2
785
word2 = crc2 ^ words[2];
786
#if N > 3
787
word3 = crc3 ^ words[3];
788
#if N > 4
789
word4 = crc4 ^ words[4];
790
#if N > 5
791
word5 = crc5 ^ words[5];
792
#endif
793
#endif
794
#endif
795
#endif
796
#endif
797
words += N;
798
799
/* Compute and update the CRC for each word. The loop should
800
get unrolled. */
801
crc0 = crc_braid_table[0][word0 & 0xff];
802
#if N > 1
803
crc1 = crc_braid_table[0][word1 & 0xff];
804
#if N > 2
805
crc2 = crc_braid_table[0][word2 & 0xff];
806
#if N > 3
807
crc3 = crc_braid_table[0][word3 & 0xff];
808
#if N > 4
809
crc4 = crc_braid_table[0][word4 & 0xff];
810
#if N > 5
811
crc5 = crc_braid_table[0][word5 & 0xff];
812
#endif
813
#endif
814
#endif
815
#endif
816
#endif
817
for (k = 1; k < W; k++) {
818
crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
819
#if N > 1
820
crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
821
#if N > 2
822
crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
823
#if N > 3
824
crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
825
#if N > 4
826
crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
827
#if N > 5
828
crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
829
#endif
830
#endif
831
#endif
832
#endif
833
#endif
834
}
835
}
836
837
/*
838
Process the last block, combining the CRCs of the N braids at the
839
same time.
840
*/
841
crc = crc_word(crc0 ^ words[0]);
842
#if N > 1
843
crc = crc_word(crc1 ^ words[1] ^ crc);
844
#if N > 2
845
crc = crc_word(crc2 ^ words[2] ^ crc);
846
#if N > 3
847
crc = crc_word(crc3 ^ words[3] ^ crc);
848
#if N > 4
849
crc = crc_word(crc4 ^ words[4] ^ crc);
850
#if N > 5
851
crc = crc_word(crc5 ^ words[5] ^ crc);
852
#endif
853
#endif
854
#endif
855
#endif
856
#endif
857
words += N;
858
}
859
else {
860
/* Big endian. */
861
862
z_word_t crc0, word0, comb;
863
#if N > 1
864
z_word_t crc1, word1;
865
#if N > 2
866
z_word_t crc2, word2;
867
#if N > 3
868
z_word_t crc3, word3;
869
#if N > 4
870
z_word_t crc4, word4;
871
#if N > 5
872
z_word_t crc5, word5;
873
#endif
874
#endif
875
#endif
876
#endif
877
#endif
878
879
/* Initialize the CRC for each braid. */
880
crc0 = byte_swap(crc);
881
#if N > 1
882
crc1 = 0;
883
#if N > 2
884
crc2 = 0;
885
#if N > 3
886
crc3 = 0;
887
#if N > 4
888
crc4 = 0;
889
#if N > 5
890
crc5 = 0;
891
#endif
892
#endif
893
#endif
894
#endif
895
#endif
896
897
/*
898
Process the first blks-1 blocks, computing the CRCs on each braid
899
independently.
900
*/
901
while (--blks) {
902
/* Load the word for each braid into registers. */
903
word0 = crc0 ^ words[0];
904
#if N > 1
905
word1 = crc1 ^ words[1];
906
#if N > 2
907
word2 = crc2 ^ words[2];
908
#if N > 3
909
word3 = crc3 ^ words[3];
910
#if N > 4
911
word4 = crc4 ^ words[4];
912
#if N > 5
913
word5 = crc5 ^ words[5];
914
#endif
915
#endif
916
#endif
917
#endif
918
#endif
919
words += N;
920
921
/* Compute and update the CRC for each word. The loop should
922
get unrolled. */
923
crc0 = crc_braid_big_table[0][word0 & 0xff];
924
#if N > 1
925
crc1 = crc_braid_big_table[0][word1 & 0xff];
926
#if N > 2
927
crc2 = crc_braid_big_table[0][word2 & 0xff];
928
#if N > 3
929
crc3 = crc_braid_big_table[0][word3 & 0xff];
930
#if N > 4
931
crc4 = crc_braid_big_table[0][word4 & 0xff];
932
#if N > 5
933
crc5 = crc_braid_big_table[0][word5 & 0xff];
934
#endif
935
#endif
936
#endif
937
#endif
938
#endif
939
for (k = 1; k < W; k++) {
940
crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
941
#if N > 1
942
crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
943
#if N > 2
944
crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
945
#if N > 3
946
crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
947
#if N > 4
948
crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
949
#if N > 5
950
crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
951
#endif
952
#endif
953
#endif
954
#endif
955
#endif
956
}
957
}
958
959
/*
960
Process the last block, combining the CRCs of the N braids at the
961
same time.
962
*/
963
comb = crc_word_big(crc0 ^ words[0]);
964
#if N > 1
965
comb = crc_word_big(crc1 ^ words[1] ^ comb);
966
#if N > 2
967
comb = crc_word_big(crc2 ^ words[2] ^ comb);
968
#if N > 3
969
comb = crc_word_big(crc3 ^ words[3] ^ comb);
970
#if N > 4
971
comb = crc_word_big(crc4 ^ words[4] ^ comb);
972
#if N > 5
973
comb = crc_word_big(crc5 ^ words[5] ^ comb);
974
#endif
975
#endif
976
#endif
977
#endif
978
#endif
979
words += N;
980
crc = byte_swap(comb);
981
}
982
983
/*
984
Update the pointer to the remaining bytes to process.
985
*/
986
buf = (unsigned char const *)words;
987
}
988
989
#endif /* W */
990
991
/* Complete the computation of the CRC on any remaining bytes. */
992
while (len >= 8) {
993
len -= 8;
994
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
995
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
996
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
997
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
998
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
999
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1000
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1001
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1002
}
1003
while (len) {
1004
len--;
1005
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1006
}
1007
1008
/* Return the CRC, post-conditioned. */
1009
return crc ^ 0xffffffff;
1010
}
1011
1012
#endif
1013
1014
/* ========================================================================= */
1015
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
1016
uInt len) {
1017
return crc32_z(crc, buf, len);
1018
}
1019
1020
/* ========================================================================= */
1021
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
1022
#ifdef DYNAMIC_CRC_TABLE
1023
once(&made, make_crc_table);
1024
#endif /* DYNAMIC_CRC_TABLE */
1025
return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
1026
}
1027
1028
/* ========================================================================= */
1029
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
1030
return crc32_combine64(crc1, crc2, (z_off64_t)len2);
1031
}
1032
1033
/* ========================================================================= */
1034
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
1035
#ifdef DYNAMIC_CRC_TABLE
1036
once(&made, make_crc_table);
1037
#endif /* DYNAMIC_CRC_TABLE */
1038
return x2nmodp(len2, 3);
1039
}
1040
1041
/* ========================================================================= */
1042
uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
1043
return crc32_combine_gen64((z_off64_t)len2);
1044
}
1045
1046
/* ========================================================================= */
1047
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
1048
return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
1049
}
1050
1051