Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/zlib/deflate.c
4389 views
1
/* deflate.c -- compress data using the deflation algorithm
2
* Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3
* For conditions of distribution and use, see copyright notice in zlib.h
4
*/
5
6
/*
7
* ALGORITHM
8
*
9
* The "deflation" process depends on being able to identify portions
10
* of the input text which are identical to earlier input (within a
11
* sliding window trailing behind the input currently being processed).
12
*
13
* The most straightforward technique turns out to be the fastest for
14
* most input files: try all possible matches and select the longest.
15
* The key feature of this algorithm is that insertions into the string
16
* dictionary are very simple and thus fast, and deletions are avoided
17
* completely. Insertions are performed at each input character, whereas
18
* string matches are performed only when the previous match ends. So it
19
* is preferable to spend more time in matches to allow very fast string
20
* insertions and avoid deletions. The matching algorithm for small
21
* strings is inspired from that of Rabin & Karp. A brute force approach
22
* is used to find longer strings when a small match has been found.
23
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
* (by Leonid Broukhis).
25
* A previous version of this file used a more sophisticated algorithm
26
* (by Fiala and Greene) which is guaranteed to run in linear amortized
27
* time, but has a larger average cost, uses more memory and is patented.
28
* However the F&G algorithm may be faster for some highly redundant
29
* files if the parameter max_chain_length (described below) is too large.
30
*
31
* ACKNOWLEDGEMENTS
32
*
33
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
* I found it in 'freeze' written by Leonid Broukhis.
35
* Thanks to many people for bug reports and testing.
36
*
37
* REFERENCES
38
*
39
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
* Available in http://tools.ietf.org/html/rfc1951
41
*
42
* A description of the Rabin and Karp algorithm is given in the book
43
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
*
45
* Fiala,E.R., and Greene,D.H.
46
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
*
48
*/
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
" deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56
/*
57
If you use the zlib library in a product, an acknowledgment is welcome
58
in the documentation of your product. If for some reason you cannot
59
include such an acknowledgment, I would appreciate that you keep this
60
copyright string in the executable of your product.
61
*/
62
63
typedef enum {
64
need_more, /* block not completed, need more input or more output */
65
block_done, /* block flush performed */
66
finish_started, /* finish started, need only more output at next deflate */
67
finish_done /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
* Local data
83
*/
84
85
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
# define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
* the desired pack level (0..9). The values given below have been tuned to
95
* exclude worst case performance for pathological files. Better values may be
96
* found for specific files.
97
*/
98
typedef struct config_s {
99
ush good_length; /* reduce lazy search above this match length */
100
ush max_lazy; /* do not perform lazy search above this match length */
101
ush nice_length; /* quit search above this match length */
102
ush max_chain;
103
compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/* good lazy nice chain */
109
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
110
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/* good lazy nice chain */
114
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
115
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4, 5, 16, 8, deflate_fast},
117
/* 3 */ {4, 6, 32, 32, deflate_fast},
118
119
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
120
/* 5 */ {8, 16, 32, 32, deflate_slow},
121
/* 6 */ {8, 16, 128, 128, deflate_slow},
122
/* 7 */ {8, 32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
* meaning.
130
*/
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
* Update a hash value with the given input byte
137
* IN assertion: all calls to UPDATE_HASH are made with consecutive input
138
* characters, so that a running hash key can be computed from the previous
139
* key instead of complete recalculation each time.
140
*/
141
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
* Insert string str in the dictionary and set match_head to the previous head
146
* of the hash chain (the most recent string with same hash key). Return
147
* the previous length of the hash chain.
148
* If this file is compiled with -DFASTEST, the compression level is forced
149
* to 1, and no hash chains are maintained.
150
* IN assertion: all calls to INSERT_STRING are made with consecutive input
151
* characters and the first MIN_MATCH bytes of str are valid (except for
152
* the last MIN_MATCH-1 bytes of the input file).
153
*/
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
match_head = s->head[s->ins_h], \
158
s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
* prev[] will be initialized on the fly.
169
*/
170
#define CLEAR_HASH(s) \
171
do { \
172
s->head[s->hash_size - 1] = NIL; \
173
zmemzero((Bytef *)s->head, \
174
(unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
} while (0)
176
177
/* ===========================================================================
178
* Slide the hash table when sliding the window down (could be avoided with 32
179
* bit values at the expense of memory usage). We slide even when level == 0 to
180
* keep the hash table consistent if we switch back to level > 0 later.
181
*/
182
#if defined(__has_feature)
183
# if __has_feature(memory_sanitizer)
184
__attribute__((no_sanitize("memory")))
185
# endif
186
#endif
187
local void slide_hash(deflate_state *s) {
188
unsigned n, m;
189
Posf *p;
190
uInt wsize = s->w_size;
191
192
n = s->hash_size;
193
p = &s->head[n];
194
do {
195
m = *--p;
196
*p = (Pos)(m >= wsize ? m - wsize : NIL);
197
} while (--n);
198
n = wsize;
199
#ifndef FASTEST
200
p = &s->prev[n];
201
do {
202
m = *--p;
203
*p = (Pos)(m >= wsize ? m - wsize : NIL);
204
/* If n is not on any hash chain, prev[n] is garbage but
205
* its value will never be used.
206
*/
207
} while (--n);
208
#endif
209
}
210
211
/* ===========================================================================
212
* Read a new buffer from the current input stream, update the adler32
213
* and total number of bytes read. All deflate() input goes through
214
* this function so some applications may wish to modify it to avoid
215
* allocating a large strm->next_in buffer and copying from it.
216
* (See also flush_pending()).
217
*/
218
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219
unsigned len = strm->avail_in;
220
221
if (len > size) len = size;
222
if (len == 0) return 0;
223
224
strm->avail_in -= len;
225
226
zmemcpy(buf, strm->next_in, len);
227
if (strm->state->wrap == 1) {
228
strm->adler = adler32(strm->adler, buf, len);
229
}
230
#ifdef GZIP
231
else if (strm->state->wrap == 2) {
232
strm->adler = crc32(strm->adler, buf, len);
233
}
234
#endif
235
strm->next_in += len;
236
strm->total_in += len;
237
238
return len;
239
}
240
241
/* ===========================================================================
242
* Fill the window when the lookahead becomes insufficient.
243
* Updates strstart and lookahead.
244
*
245
* IN assertion: lookahead < MIN_LOOKAHEAD
246
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247
* At least one byte has been read, or avail_in == 0; reads are
248
* performed for at least two bytes (required for the zip translate_eol
249
* option -- not supported here).
250
*/
251
local void fill_window(deflate_state *s) {
252
unsigned n;
253
unsigned more; /* Amount of free space at the end of the window. */
254
uInt wsize = s->w_size;
255
256
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258
do {
259
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261
/* Deal with !@#$% 64K limit: */
262
if (sizeof(int) <= 2) {
263
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264
more = wsize;
265
266
} else if (more == (unsigned)(-1)) {
267
/* Very unlikely, but possible on 16 bit machine if
268
* strstart == 0 && lookahead == 1 (input done a byte at time)
269
*/
270
more--;
271
}
272
}
273
274
/* If the window is almost full and there is insufficient lookahead,
275
* move the upper half to the lower one to make room in the upper half.
276
*/
277
if (s->strstart >= wsize + MAX_DIST(s)) {
278
279
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280
s->match_start -= wsize;
281
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
282
s->block_start -= (long) wsize;
283
if (s->insert > s->strstart)
284
s->insert = s->strstart;
285
slide_hash(s);
286
more += wsize;
287
}
288
if (s->strm->avail_in == 0) break;
289
290
/* If there was no sliding:
291
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292
* more == window_size - lookahead - strstart
293
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294
* => more >= window_size - 2*WSIZE + 2
295
* In the BIG_MEM or MMAP case (not yet supported),
296
* window_size == input_size + MIN_LOOKAHEAD &&
297
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298
* Otherwise, window_size == 2*WSIZE so more >= 2.
299
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300
*/
301
Assert(more >= 2, "more < 2");
302
303
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304
s->lookahead += n;
305
306
/* Initialize the hash value now that we have some input: */
307
if (s->lookahead + s->insert >= MIN_MATCH) {
308
uInt str = s->strstart - s->insert;
309
s->ins_h = s->window[str];
310
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311
#if MIN_MATCH != 3
312
Call UPDATE_HASH() MIN_MATCH-3 more times
313
#endif
314
while (s->insert) {
315
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316
#ifndef FASTEST
317
s->prev[str & s->w_mask] = s->head[s->ins_h];
318
#endif
319
s->head[s->ins_h] = (Pos)str;
320
str++;
321
s->insert--;
322
if (s->lookahead + s->insert < MIN_MATCH)
323
break;
324
}
325
}
326
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327
* but this is not important since only literal bytes will be emitted.
328
*/
329
330
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332
/* If the WIN_INIT bytes after the end of the current data have never been
333
* written, then zero those bytes in order to avoid memory check reports of
334
* the use of uninitialized (or uninitialised as Julian writes) bytes by
335
* the longest match routines. Update the high water mark for the next
336
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
337
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338
*/
339
if (s->high_water < s->window_size) {
340
ulg curr = s->strstart + (ulg)(s->lookahead);
341
ulg init;
342
343
if (s->high_water < curr) {
344
/* Previous high water mark below current data -- zero WIN_INIT
345
* bytes or up to end of window, whichever is less.
346
*/
347
init = s->window_size - curr;
348
if (init > WIN_INIT)
349
init = WIN_INIT;
350
zmemzero(s->window + curr, (unsigned)init);
351
s->high_water = curr + init;
352
}
353
else if (s->high_water < (ulg)curr + WIN_INIT) {
354
/* High water mark at or above current data, but below current data
355
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356
* to end of window, whichever is less.
357
*/
358
init = (ulg)curr + WIN_INIT - s->high_water;
359
if (init > s->window_size - s->high_water)
360
init = s->window_size - s->high_water;
361
zmemzero(s->window + s->high_water, (unsigned)init);
362
s->high_water += init;
363
}
364
}
365
366
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367
"not enough room for search");
368
}
369
370
/* ========================================================================= */
371
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372
int stream_size) {
373
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374
Z_DEFAULT_STRATEGY, version, stream_size);
375
/* To do: ignore strm->next_in if we use it as window */
376
}
377
378
/* ========================================================================= */
379
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380
int windowBits, int memLevel, int strategy,
381
const char *version, int stream_size) {
382
deflate_state *s;
383
int wrap = 1;
384
static const char my_version[] = ZLIB_VERSION;
385
386
if (version == Z_NULL || version[0] != my_version[0] ||
387
stream_size != sizeof(z_stream)) {
388
return Z_VERSION_ERROR;
389
}
390
if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392
strm->msg = Z_NULL;
393
if (strm->zalloc == (alloc_func)0) {
394
#ifdef Z_SOLO
395
return Z_STREAM_ERROR;
396
#else
397
strm->zalloc = zcalloc;
398
strm->opaque = (voidpf)0;
399
#endif
400
}
401
if (strm->zfree == (free_func)0)
402
#ifdef Z_SOLO
403
return Z_STREAM_ERROR;
404
#else
405
strm->zfree = zcfree;
406
#endif
407
408
#ifdef FASTEST
409
if (level != 0) level = 1;
410
#else
411
if (level == Z_DEFAULT_COMPRESSION) level = 6;
412
#endif
413
414
if (windowBits < 0) { /* suppress zlib wrapper */
415
wrap = 0;
416
if (windowBits < -15)
417
return Z_STREAM_ERROR;
418
windowBits = -windowBits;
419
}
420
#ifdef GZIP
421
else if (windowBits > 15) {
422
wrap = 2; /* write gzip wrapper instead */
423
windowBits -= 16;
424
}
425
#endif
426
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428
strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429
return Z_STREAM_ERROR;
430
}
431
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
432
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433
if (s == Z_NULL) return Z_MEM_ERROR;
434
strm->state = (struct internal_state FAR *)s;
435
s->strm = strm;
436
s->status = INIT_STATE; /* to pass state test in deflateReset() */
437
438
s->wrap = wrap;
439
s->gzhead = Z_NULL;
440
s->w_bits = (uInt)windowBits;
441
s->w_size = 1 << s->w_bits;
442
s->w_mask = s->w_size - 1;
443
444
s->hash_bits = (uInt)memLevel + 7;
445
s->hash_size = 1 << s->hash_bits;
446
s->hash_mask = s->hash_size - 1;
447
s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
451
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
452
453
s->high_water = 0; /* nothing written to s->window yet */
454
455
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
456
457
/* We overlay pending_buf and sym_buf. This works since the average size
458
* for length/distance pairs over any compressed block is assured to be 31
459
* bits or less.
460
*
461
* Analysis: The longest fixed codes are a length code of 8 bits plus 5
462
* extra bits, for lengths 131 to 257. The longest fixed distance codes are
463
* 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464
* possible fixed-codes length/distance pair is then 31 bits total.
465
*
466
* sym_buf starts one-fourth of the way into pending_buf. So there are
467
* three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468
* in sym_buf is three bytes -- two for the distance and one for the
469
* literal/length. As each symbol is consumed, the pointer to the next
470
* sym_buf value to read moves forward three bytes. From that symbol, up to
471
* 31 bits are written to pending_buf. The closest the written pending_buf
472
* bits gets to the next sym_buf symbol to read is just before the last
473
* code is written. At that time, 31*(n - 2) bits have been written, just
474
* after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475
* 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476
* symbols are written.) The closest the writing gets to what is unread is
477
* then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478
* can range from 128 to 32768.
479
*
480
* Therefore, at a minimum, there are 142 bits of space between what is
481
* written and what is read in the overlain buffers, so the symbols cannot
482
* be overwritten by the compressed data. That space is actually 139 bits,
483
* due to the three-bit fixed-code block header.
484
*
485
* That covers the case where either Z_FIXED is specified, forcing fixed
486
* codes, or when the use of fixed codes is chosen, because that choice
487
* results in a smaller compressed block than dynamic codes. That latter
488
* condition then assures that the above analysis also covers all dynamic
489
* blocks. A dynamic-code block will only be chosen to be emitted if it has
490
* fewer bits than a fixed-code block would for the same set of symbols.
491
* Therefore its average symbol length is assured to be less than 31. So
492
* the compressed data for a dynamic block also cannot overwrite the
493
* symbols from which it is being constructed.
494
*/
495
496
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
497
s->pending_buf_size = (ulg)s->lit_bufsize * 4;
498
499
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
500
s->pending_buf == Z_NULL) {
501
s->status = FINISH_STATE;
502
strm->msg = ERR_MSG(Z_MEM_ERROR);
503
deflateEnd (strm);
504
return Z_MEM_ERROR;
505
}
506
#ifdef LIT_MEM
507
s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
508
s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
509
s->sym_end = s->lit_bufsize - 1;
510
#else
511
s->sym_buf = s->pending_buf + s->lit_bufsize;
512
s->sym_end = (s->lit_bufsize - 1) * 3;
513
#endif
514
/* We avoid equality with lit_bufsize*3 because of wraparound at 64K
515
* on 16 bit machines and because stored blocks are restricted to
516
* 64K-1 bytes.
517
*/
518
519
s->level = level;
520
s->strategy = strategy;
521
s->method = (Byte)method;
522
523
return deflateReset(strm);
524
}
525
526
/* =========================================================================
527
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
528
*/
529
local int deflateStateCheck(z_streamp strm) {
530
deflate_state *s;
531
if (strm == Z_NULL ||
532
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
533
return 1;
534
s = strm->state;
535
if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
536
#ifdef GZIP
537
s->status != GZIP_STATE &&
538
#endif
539
s->status != EXTRA_STATE &&
540
s->status != NAME_STATE &&
541
s->status != COMMENT_STATE &&
542
s->status != HCRC_STATE &&
543
s->status != BUSY_STATE &&
544
s->status != FINISH_STATE))
545
return 1;
546
return 0;
547
}
548
549
/* ========================================================================= */
550
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
551
uInt dictLength) {
552
deflate_state *s;
553
uInt str, n;
554
int wrap;
555
unsigned avail;
556
z_const unsigned char *next;
557
558
if (deflateStateCheck(strm) || dictionary == Z_NULL)
559
return Z_STREAM_ERROR;
560
s = strm->state;
561
wrap = s->wrap;
562
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
563
return Z_STREAM_ERROR;
564
565
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
566
if (wrap == 1)
567
strm->adler = adler32(strm->adler, dictionary, dictLength);
568
s->wrap = 0; /* avoid computing Adler-32 in read_buf */
569
570
/* if dictionary would fill window, just replace the history */
571
if (dictLength >= s->w_size) {
572
if (wrap == 0) { /* already empty otherwise */
573
CLEAR_HASH(s);
574
s->strstart = 0;
575
s->block_start = 0L;
576
s->insert = 0;
577
}
578
dictionary += dictLength - s->w_size; /* use the tail */
579
dictLength = s->w_size;
580
}
581
582
/* insert dictionary into window and hash */
583
avail = strm->avail_in;
584
next = strm->next_in;
585
strm->avail_in = dictLength;
586
strm->next_in = (z_const Bytef *)dictionary;
587
fill_window(s);
588
while (s->lookahead >= MIN_MATCH) {
589
str = s->strstart;
590
n = s->lookahead - (MIN_MATCH-1);
591
do {
592
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
593
#ifndef FASTEST
594
s->prev[str & s->w_mask] = s->head[s->ins_h];
595
#endif
596
s->head[s->ins_h] = (Pos)str;
597
str++;
598
} while (--n);
599
s->strstart = str;
600
s->lookahead = MIN_MATCH-1;
601
fill_window(s);
602
}
603
s->strstart += s->lookahead;
604
s->block_start = (long)s->strstart;
605
s->insert = s->lookahead;
606
s->lookahead = 0;
607
s->match_length = s->prev_length = MIN_MATCH-1;
608
s->match_available = 0;
609
strm->next_in = next;
610
strm->avail_in = avail;
611
s->wrap = wrap;
612
return Z_OK;
613
}
614
615
/* ========================================================================= */
616
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
617
uInt *dictLength) {
618
deflate_state *s;
619
uInt len;
620
621
if (deflateStateCheck(strm))
622
return Z_STREAM_ERROR;
623
s = strm->state;
624
len = s->strstart + s->lookahead;
625
if (len > s->w_size)
626
len = s->w_size;
627
if (dictionary != Z_NULL && len)
628
zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
629
if (dictLength != Z_NULL)
630
*dictLength = len;
631
return Z_OK;
632
}
633
634
/* ========================================================================= */
635
int ZEXPORT deflateResetKeep(z_streamp strm) {
636
deflate_state *s;
637
638
if (deflateStateCheck(strm)) {
639
return Z_STREAM_ERROR;
640
}
641
642
strm->total_in = strm->total_out = 0;
643
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
644
strm->data_type = Z_UNKNOWN;
645
646
s = (deflate_state *)strm->state;
647
s->pending = 0;
648
s->pending_out = s->pending_buf;
649
650
if (s->wrap < 0) {
651
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
652
}
653
s->status =
654
#ifdef GZIP
655
s->wrap == 2 ? GZIP_STATE :
656
#endif
657
INIT_STATE;
658
strm->adler =
659
#ifdef GZIP
660
s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
661
#endif
662
adler32(0L, Z_NULL, 0);
663
s->last_flush = -2;
664
665
_tr_init(s);
666
667
return Z_OK;
668
}
669
670
/* ===========================================================================
671
* Initialize the "longest match" routines for a new zlib stream
672
*/
673
local void lm_init(deflate_state *s) {
674
s->window_size = (ulg)2L*s->w_size;
675
676
CLEAR_HASH(s);
677
678
/* Set the default configuration parameters:
679
*/
680
s->max_lazy_match = configuration_table[s->level].max_lazy;
681
s->good_match = configuration_table[s->level].good_length;
682
s->nice_match = configuration_table[s->level].nice_length;
683
s->max_chain_length = configuration_table[s->level].max_chain;
684
685
s->strstart = 0;
686
s->block_start = 0L;
687
s->lookahead = 0;
688
s->insert = 0;
689
s->match_length = s->prev_length = MIN_MATCH-1;
690
s->match_available = 0;
691
s->ins_h = 0;
692
}
693
694
/* ========================================================================= */
695
int ZEXPORT deflateReset(z_streamp strm) {
696
int ret;
697
698
ret = deflateResetKeep(strm);
699
if (ret == Z_OK)
700
lm_init(strm->state);
701
return ret;
702
}
703
704
/* ========================================================================= */
705
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
706
if (deflateStateCheck(strm) || strm->state->wrap != 2)
707
return Z_STREAM_ERROR;
708
strm->state->gzhead = head;
709
return Z_OK;
710
}
711
712
/* ========================================================================= */
713
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
714
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
715
if (pending != Z_NULL)
716
*pending = strm->state->pending;
717
if (bits != Z_NULL)
718
*bits = strm->state->bi_valid;
719
return Z_OK;
720
}
721
722
/* ========================================================================= */
723
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
724
deflate_state *s;
725
int put;
726
727
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
728
s = strm->state;
729
#ifdef LIT_MEM
730
if (bits < 0 || bits > 16 ||
731
(uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
732
return Z_BUF_ERROR;
733
#else
734
if (bits < 0 || bits > 16 ||
735
s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
736
return Z_BUF_ERROR;
737
#endif
738
do {
739
put = Buf_size - s->bi_valid;
740
if (put > bits)
741
put = bits;
742
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
743
s->bi_valid += put;
744
_tr_flush_bits(s);
745
value >>= put;
746
bits -= put;
747
} while (bits);
748
return Z_OK;
749
}
750
751
/* ========================================================================= */
752
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
753
deflate_state *s;
754
compress_func func;
755
756
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
757
s = strm->state;
758
759
#ifdef FASTEST
760
if (level != 0) level = 1;
761
#else
762
if (level == Z_DEFAULT_COMPRESSION) level = 6;
763
#endif
764
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
765
return Z_STREAM_ERROR;
766
}
767
func = configuration_table[s->level].func;
768
769
if ((strategy != s->strategy || func != configuration_table[level].func) &&
770
s->last_flush != -2) {
771
/* Flush the last buffer: */
772
int err = deflate(strm, Z_BLOCK);
773
if (err == Z_STREAM_ERROR)
774
return err;
775
if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
776
return Z_BUF_ERROR;
777
}
778
if (s->level != level) {
779
if (s->level == 0 && s->matches != 0) {
780
if (s->matches == 1)
781
slide_hash(s);
782
else
783
CLEAR_HASH(s);
784
s->matches = 0;
785
}
786
s->level = level;
787
s->max_lazy_match = configuration_table[level].max_lazy;
788
s->good_match = configuration_table[level].good_length;
789
s->nice_match = configuration_table[level].nice_length;
790
s->max_chain_length = configuration_table[level].max_chain;
791
}
792
s->strategy = strategy;
793
return Z_OK;
794
}
795
796
/* ========================================================================= */
797
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
798
int nice_length, int max_chain) {
799
deflate_state *s;
800
801
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
802
s = strm->state;
803
s->good_match = (uInt)good_length;
804
s->max_lazy_match = (uInt)max_lazy;
805
s->nice_match = nice_length;
806
s->max_chain_length = (uInt)max_chain;
807
return Z_OK;
808
}
809
810
/* =========================================================================
811
* For the default windowBits of 15 and memLevel of 8, this function returns a
812
* close to exact, as well as small, upper bound on the compressed size. This
813
* is an expansion of ~0.03%, plus a small constant.
814
*
815
* For any setting other than those defaults for windowBits and memLevel, one
816
* of two worst case bounds is returned. This is at most an expansion of ~4% or
817
* ~13%, plus a small constant.
818
*
819
* Both the 0.03% and 4% derive from the overhead of stored blocks. The first
820
* one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
821
* is for stored blocks of 127 bytes (the worst case memLevel == 1). The
822
* expansion results from five bytes of header for each stored block.
823
*
824
* The larger expansion of 13% results from a window size less than or equal to
825
* the symbols buffer size (windowBits <= memLevel + 7). In that case some of
826
* the data being compressed may have slid out of the sliding window, impeding
827
* a stored block from being emitted. Then the only choice is a fixed or
828
* dynamic block, where a fixed block limits the maximum expansion to 9 bits
829
* per 8-bit byte, plus 10 bits for every block. The smallest block size for
830
* which this can occur is 255 (memLevel == 2).
831
*
832
* Shifts are used to approximate divisions, for speed.
833
*/
834
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
835
deflate_state *s;
836
uLong fixedlen, storelen, wraplen;
837
838
/* upper bound for fixed blocks with 9-bit literals and length 255
839
(memLevel == 2, which is the lowest that may not use stored blocks) --
840
~13% overhead plus a small constant */
841
fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
842
(sourceLen >> 9) + 4;
843
844
/* upper bound for stored blocks with length 127 (memLevel == 1) --
845
~4% overhead plus a small constant */
846
storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
847
(sourceLen >> 11) + 7;
848
849
/* if can't get parameters, return larger bound plus a zlib wrapper */
850
if (deflateStateCheck(strm))
851
return (fixedlen > storelen ? fixedlen : storelen) + 6;
852
853
/* compute wrapper length */
854
s = strm->state;
855
switch (s->wrap) {
856
case 0: /* raw deflate */
857
wraplen = 0;
858
break;
859
case 1: /* zlib wrapper */
860
wraplen = 6 + (s->strstart ? 4 : 0);
861
break;
862
#ifdef GZIP
863
case 2: /* gzip wrapper */
864
wraplen = 18;
865
if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
866
Bytef *str;
867
if (s->gzhead->extra != Z_NULL)
868
wraplen += 2 + s->gzhead->extra_len;
869
str = s->gzhead->name;
870
if (str != Z_NULL)
871
do {
872
wraplen++;
873
} while (*str++);
874
str = s->gzhead->comment;
875
if (str != Z_NULL)
876
do {
877
wraplen++;
878
} while (*str++);
879
if (s->gzhead->hcrc)
880
wraplen += 2;
881
}
882
break;
883
#endif
884
default: /* for compiler happiness */
885
wraplen = 6;
886
}
887
888
/* if not default parameters, return one of the conservative bounds */
889
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
890
return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
891
wraplen;
892
893
/* default settings: return tight bound for that case -- ~0.03% overhead
894
plus a small constant */
895
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
896
(sourceLen >> 25) + 13 - 6 + wraplen;
897
}
898
899
/* =========================================================================
900
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
901
* IN assertion: the stream state is correct and there is enough room in
902
* pending_buf.
903
*/
904
local void putShortMSB(deflate_state *s, uInt b) {
905
put_byte(s, (Byte)(b >> 8));
906
put_byte(s, (Byte)(b & 0xff));
907
}
908
909
/* =========================================================================
910
* Flush as much pending output as possible. All deflate() output, except for
911
* some deflate_stored() output, goes through this function so some
912
* applications may wish to modify it to avoid allocating a large
913
* strm->next_out buffer and copying into it. (See also read_buf()).
914
*/
915
local void flush_pending(z_streamp strm) {
916
unsigned len;
917
deflate_state *s = strm->state;
918
919
_tr_flush_bits(s);
920
len = s->pending;
921
if (len > strm->avail_out) len = strm->avail_out;
922
if (len == 0) return;
923
924
zmemcpy(strm->next_out, s->pending_out, len);
925
strm->next_out += len;
926
s->pending_out += len;
927
strm->total_out += len;
928
strm->avail_out -= len;
929
s->pending -= len;
930
if (s->pending == 0) {
931
s->pending_out = s->pending_buf;
932
}
933
}
934
935
/* ===========================================================================
936
* Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
937
*/
938
#define HCRC_UPDATE(beg) \
939
do { \
940
if (s->gzhead->hcrc && s->pending > (beg)) \
941
strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
942
s->pending - (beg)); \
943
} while (0)
944
945
/* ========================================================================= */
946
int ZEXPORT deflate(z_streamp strm, int flush) {
947
int old_flush; /* value of flush param for previous deflate call */
948
deflate_state *s;
949
950
if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
951
return Z_STREAM_ERROR;
952
}
953
s = strm->state;
954
955
if (strm->next_out == Z_NULL ||
956
(strm->avail_in != 0 && strm->next_in == Z_NULL) ||
957
(s->status == FINISH_STATE && flush != Z_FINISH)) {
958
ERR_RETURN(strm, Z_STREAM_ERROR);
959
}
960
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
961
962
old_flush = s->last_flush;
963
s->last_flush = flush;
964
965
/* Flush as much pending output as possible */
966
if (s->pending != 0) {
967
flush_pending(strm);
968
if (strm->avail_out == 0) {
969
/* Since avail_out is 0, deflate will be called again with
970
* more output space, but possibly with both pending and
971
* avail_in equal to zero. There won't be anything to do,
972
* but this is not an error situation so make sure we
973
* return OK instead of BUF_ERROR at next call of deflate:
974
*/
975
s->last_flush = -1;
976
return Z_OK;
977
}
978
979
/* Make sure there is something to do and avoid duplicate consecutive
980
* flushes. For repeated and useless calls with Z_FINISH, we keep
981
* returning Z_STREAM_END instead of Z_BUF_ERROR.
982
*/
983
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
984
flush != Z_FINISH) {
985
ERR_RETURN(strm, Z_BUF_ERROR);
986
}
987
988
/* User must not provide more input after the first FINISH: */
989
if (s->status == FINISH_STATE && strm->avail_in != 0) {
990
ERR_RETURN(strm, Z_BUF_ERROR);
991
}
992
993
/* Write the header */
994
if (s->status == INIT_STATE && s->wrap == 0)
995
s->status = BUSY_STATE;
996
if (s->status == INIT_STATE) {
997
/* zlib header */
998
uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
999
uInt level_flags;
1000
1001
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1002
level_flags = 0;
1003
else if (s->level < 6)
1004
level_flags = 1;
1005
else if (s->level == 6)
1006
level_flags = 2;
1007
else
1008
level_flags = 3;
1009
header |= (level_flags << 6);
1010
if (s->strstart != 0) header |= PRESET_DICT;
1011
header += 31 - (header % 31);
1012
1013
putShortMSB(s, header);
1014
1015
/* Save the adler32 of the preset dictionary: */
1016
if (s->strstart != 0) {
1017
putShortMSB(s, (uInt)(strm->adler >> 16));
1018
putShortMSB(s, (uInt)(strm->adler & 0xffff));
1019
}
1020
strm->adler = adler32(0L, Z_NULL, 0);
1021
s->status = BUSY_STATE;
1022
1023
/* Compression must start with an empty pending buffer */
1024
flush_pending(strm);
1025
if (s->pending != 0) {
1026
s->last_flush = -1;
1027
return Z_OK;
1028
}
1029
}
1030
#ifdef GZIP
1031
if (s->status == GZIP_STATE) {
1032
/* gzip header */
1033
strm->adler = crc32(0L, Z_NULL, 0);
1034
put_byte(s, 31);
1035
put_byte(s, 139);
1036
put_byte(s, 8);
1037
if (s->gzhead == Z_NULL) {
1038
put_byte(s, 0);
1039
put_byte(s, 0);
1040
put_byte(s, 0);
1041
put_byte(s, 0);
1042
put_byte(s, 0);
1043
put_byte(s, s->level == 9 ? 2 :
1044
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1045
4 : 0));
1046
put_byte(s, OS_CODE);
1047
s->status = BUSY_STATE;
1048
1049
/* Compression must start with an empty pending buffer */
1050
flush_pending(strm);
1051
if (s->pending != 0) {
1052
s->last_flush = -1;
1053
return Z_OK;
1054
}
1055
}
1056
else {
1057
put_byte(s, (s->gzhead->text ? 1 : 0) +
1058
(s->gzhead->hcrc ? 2 : 0) +
1059
(s->gzhead->extra == Z_NULL ? 0 : 4) +
1060
(s->gzhead->name == Z_NULL ? 0 : 8) +
1061
(s->gzhead->comment == Z_NULL ? 0 : 16)
1062
);
1063
put_byte(s, (Byte)(s->gzhead->time & 0xff));
1064
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1065
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1066
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1067
put_byte(s, s->level == 9 ? 2 :
1068
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1069
4 : 0));
1070
put_byte(s, s->gzhead->os & 0xff);
1071
if (s->gzhead->extra != Z_NULL) {
1072
put_byte(s, s->gzhead->extra_len & 0xff);
1073
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1074
}
1075
if (s->gzhead->hcrc)
1076
strm->adler = crc32(strm->adler, s->pending_buf,
1077
s->pending);
1078
s->gzindex = 0;
1079
s->status = EXTRA_STATE;
1080
}
1081
}
1082
if (s->status == EXTRA_STATE) {
1083
if (s->gzhead->extra != Z_NULL) {
1084
ulg beg = s->pending; /* start of bytes to update crc */
1085
uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1086
while (s->pending + left > s->pending_buf_size) {
1087
uInt copy = s->pending_buf_size - s->pending;
1088
zmemcpy(s->pending_buf + s->pending,
1089
s->gzhead->extra + s->gzindex, copy);
1090
s->pending = s->pending_buf_size;
1091
HCRC_UPDATE(beg);
1092
s->gzindex += copy;
1093
flush_pending(strm);
1094
if (s->pending != 0) {
1095
s->last_flush = -1;
1096
return Z_OK;
1097
}
1098
beg = 0;
1099
left -= copy;
1100
}
1101
zmemcpy(s->pending_buf + s->pending,
1102
s->gzhead->extra + s->gzindex, left);
1103
s->pending += left;
1104
HCRC_UPDATE(beg);
1105
s->gzindex = 0;
1106
}
1107
s->status = NAME_STATE;
1108
}
1109
if (s->status == NAME_STATE) {
1110
if (s->gzhead->name != Z_NULL) {
1111
ulg beg = s->pending; /* start of bytes to update crc */
1112
int val;
1113
do {
1114
if (s->pending == s->pending_buf_size) {
1115
HCRC_UPDATE(beg);
1116
flush_pending(strm);
1117
if (s->pending != 0) {
1118
s->last_flush = -1;
1119
return Z_OK;
1120
}
1121
beg = 0;
1122
}
1123
val = s->gzhead->name[s->gzindex++];
1124
put_byte(s, val);
1125
} while (val != 0);
1126
HCRC_UPDATE(beg);
1127
s->gzindex = 0;
1128
}
1129
s->status = COMMENT_STATE;
1130
}
1131
if (s->status == COMMENT_STATE) {
1132
if (s->gzhead->comment != Z_NULL) {
1133
ulg beg = s->pending; /* start of bytes to update crc */
1134
int val;
1135
do {
1136
if (s->pending == s->pending_buf_size) {
1137
HCRC_UPDATE(beg);
1138
flush_pending(strm);
1139
if (s->pending != 0) {
1140
s->last_flush = -1;
1141
return Z_OK;
1142
}
1143
beg = 0;
1144
}
1145
val = s->gzhead->comment[s->gzindex++];
1146
put_byte(s, val);
1147
} while (val != 0);
1148
HCRC_UPDATE(beg);
1149
}
1150
s->status = HCRC_STATE;
1151
}
1152
if (s->status == HCRC_STATE) {
1153
if (s->gzhead->hcrc) {
1154
if (s->pending + 2 > s->pending_buf_size) {
1155
flush_pending(strm);
1156
if (s->pending != 0) {
1157
s->last_flush = -1;
1158
return Z_OK;
1159
}
1160
}
1161
put_byte(s, (Byte)(strm->adler & 0xff));
1162
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1163
strm->adler = crc32(0L, Z_NULL, 0);
1164
}
1165
s->status = BUSY_STATE;
1166
1167
/* Compression must start with an empty pending buffer */
1168
flush_pending(strm);
1169
if (s->pending != 0) {
1170
s->last_flush = -1;
1171
return Z_OK;
1172
}
1173
}
1174
#endif
1175
1176
/* Start a new block or continue the current one.
1177
*/
1178
if (strm->avail_in != 0 || s->lookahead != 0 ||
1179
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1180
block_state bstate;
1181
1182
bstate = s->level == 0 ? deflate_stored(s, flush) :
1183
s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1184
s->strategy == Z_RLE ? deflate_rle(s, flush) :
1185
(*(configuration_table[s->level].func))(s, flush);
1186
1187
if (bstate == finish_started || bstate == finish_done) {
1188
s->status = FINISH_STATE;
1189
}
1190
if (bstate == need_more || bstate == finish_started) {
1191
if (strm->avail_out == 0) {
1192
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1193
}
1194
return Z_OK;
1195
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1196
* of deflate should use the same flush parameter to make sure
1197
* that the flush is complete. So we don't have to output an
1198
* empty block here, this will be done at next call. This also
1199
* ensures that for a very small output buffer, we emit at most
1200
* one empty block.
1201
*/
1202
}
1203
if (bstate == block_done) {
1204
if (flush == Z_PARTIAL_FLUSH) {
1205
_tr_align(s);
1206
} else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1207
_tr_stored_block(s, (char*)0, 0L, 0);
1208
/* For a full flush, this empty block will be recognized
1209
* as a special marker by inflate_sync().
1210
*/
1211
if (flush == Z_FULL_FLUSH) {
1212
CLEAR_HASH(s); /* forget history */
1213
if (s->lookahead == 0) {
1214
s->strstart = 0;
1215
s->block_start = 0L;
1216
s->insert = 0;
1217
}
1218
}
1219
}
1220
flush_pending(strm);
1221
if (strm->avail_out == 0) {
1222
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1223
return Z_OK;
1224
}
1225
}
1226
}
1227
1228
if (flush != Z_FINISH) return Z_OK;
1229
if (s->wrap <= 0) return Z_STREAM_END;
1230
1231
/* Write the trailer */
1232
#ifdef GZIP
1233
if (s->wrap == 2) {
1234
put_byte(s, (Byte)(strm->adler & 0xff));
1235
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1236
put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1237
put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1238
put_byte(s, (Byte)(strm->total_in & 0xff));
1239
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1240
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1241
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1242
}
1243
else
1244
#endif
1245
{
1246
putShortMSB(s, (uInt)(strm->adler >> 16));
1247
putShortMSB(s, (uInt)(strm->adler & 0xffff));
1248
}
1249
flush_pending(strm);
1250
/* If avail_out is zero, the application will call deflate again
1251
* to flush the rest.
1252
*/
1253
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1254
return s->pending != 0 ? Z_OK : Z_STREAM_END;
1255
}
1256
1257
/* ========================================================================= */
1258
int ZEXPORT deflateEnd(z_streamp strm) {
1259
int status;
1260
1261
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1262
1263
status = strm->state->status;
1264
1265
/* Deallocate in reverse order of allocations: */
1266
TRY_FREE(strm, strm->state->pending_buf);
1267
TRY_FREE(strm, strm->state->head);
1268
TRY_FREE(strm, strm->state->prev);
1269
TRY_FREE(strm, strm->state->window);
1270
1271
ZFREE(strm, strm->state);
1272
strm->state = Z_NULL;
1273
1274
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1275
}
1276
1277
/* =========================================================================
1278
* Copy the source state to the destination state.
1279
* To simplify the source, this is not supported for 16-bit MSDOS (which
1280
* doesn't have enough memory anyway to duplicate compression states).
1281
*/
1282
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1283
#ifdef MAXSEG_64K
1284
(void)dest;
1285
(void)source;
1286
return Z_STREAM_ERROR;
1287
#else
1288
deflate_state *ds;
1289
deflate_state *ss;
1290
1291
1292
if (deflateStateCheck(source) || dest == Z_NULL) {
1293
return Z_STREAM_ERROR;
1294
}
1295
1296
ss = source->state;
1297
1298
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1299
1300
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1301
if (ds == Z_NULL) return Z_MEM_ERROR;
1302
dest->state = (struct internal_state FAR *) ds;
1303
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1304
ds->strm = dest;
1305
1306
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1307
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1308
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1309
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1310
1311
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1312
ds->pending_buf == Z_NULL) {
1313
deflateEnd (dest);
1314
return Z_MEM_ERROR;
1315
}
1316
/* following zmemcpy do not work for 16-bit MSDOS */
1317
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1318
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1319
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1320
zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1321
1322
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1323
#ifdef LIT_MEM
1324
ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1325
ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1326
#else
1327
ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1328
#endif
1329
1330
ds->l_desc.dyn_tree = ds->dyn_ltree;
1331
ds->d_desc.dyn_tree = ds->dyn_dtree;
1332
ds->bl_desc.dyn_tree = ds->bl_tree;
1333
1334
return Z_OK;
1335
#endif /* MAXSEG_64K */
1336
}
1337
1338
#ifndef FASTEST
1339
/* ===========================================================================
1340
* Set match_start to the longest match starting at the given string and
1341
* return its length. Matches shorter or equal to prev_length are discarded,
1342
* in which case the result is equal to prev_length and match_start is
1343
* garbage.
1344
* IN assertions: cur_match is the head of the hash chain for the current
1345
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1346
* OUT assertion: the match length is not greater than s->lookahead.
1347
*/
1348
local uInt longest_match(deflate_state *s, IPos cur_match) {
1349
unsigned chain_length = s->max_chain_length;/* max hash chain length */
1350
register Bytef *scan = s->window + s->strstart; /* current string */
1351
register Bytef *match; /* matched string */
1352
register int len; /* length of current match */
1353
int best_len = (int)s->prev_length; /* best match length so far */
1354
int nice_match = s->nice_match; /* stop if match long enough */
1355
IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1356
s->strstart - (IPos)MAX_DIST(s) : NIL;
1357
/* Stop when cur_match becomes <= limit. To simplify the code,
1358
* we prevent matches with the string of window index 0.
1359
*/
1360
Posf *prev = s->prev;
1361
uInt wmask = s->w_mask;
1362
1363
#ifdef UNALIGNED_OK
1364
/* Compare two bytes at a time. Note: this is not always beneficial.
1365
* Try with and without -DUNALIGNED_OK to check.
1366
*/
1367
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1368
register ush scan_start = *(ushf*)scan;
1369
register ush scan_end = *(ushf*)(scan + best_len - 1);
1370
#else
1371
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1372
register Byte scan_end1 = scan[best_len - 1];
1373
register Byte scan_end = scan[best_len];
1374
#endif
1375
1376
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1377
* It is easy to get rid of this optimization if necessary.
1378
*/
1379
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1380
1381
/* Do not waste too much time if we already have a good match: */
1382
if (s->prev_length >= s->good_match) {
1383
chain_length >>= 2;
1384
}
1385
/* Do not look for matches beyond the end of the input. This is necessary
1386
* to make deflate deterministic.
1387
*/
1388
if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1389
1390
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1391
"need lookahead");
1392
1393
do {
1394
Assert(cur_match < s->strstart, "no future");
1395
match = s->window + cur_match;
1396
1397
/* Skip to next match if the match length cannot increase
1398
* or if the match length is less than 2. Note that the checks below
1399
* for insufficient lookahead only occur occasionally for performance
1400
* reasons. Therefore uninitialized memory will be accessed, and
1401
* conditional jumps will be made that depend on those values.
1402
* However the length of the match is limited to the lookahead, so
1403
* the output of deflate is not affected by the uninitialized values.
1404
*/
1405
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1406
/* This code assumes sizeof(unsigned short) == 2. Do not use
1407
* UNALIGNED_OK if your compiler uses a different size.
1408
*/
1409
if (*(ushf*)(match + best_len - 1) != scan_end ||
1410
*(ushf*)match != scan_start) continue;
1411
1412
/* It is not necessary to compare scan[2] and match[2] since they are
1413
* always equal when the other bytes match, given that the hash keys
1414
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1415
* strstart + 3, + 5, up to strstart + 257. We check for insufficient
1416
* lookahead only every 4th comparison; the 128th check will be made
1417
* at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1418
* necessary to put more guard bytes at the end of the window, or
1419
* to check more often for insufficient lookahead.
1420
*/
1421
Assert(scan[2] == match[2], "scan[2]?");
1422
scan++, match++;
1423
do {
1424
} while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1425
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1426
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1427
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1428
scan < strend);
1429
/* The funny "do {}" generates better code on most compilers */
1430
1431
/* Here, scan <= window + strstart + 257 */
1432
Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1433
"wild scan");
1434
if (*scan == *match) scan++;
1435
1436
len = (MAX_MATCH - 1) - (int)(strend - scan);
1437
scan = strend - (MAX_MATCH-1);
1438
1439
#else /* UNALIGNED_OK */
1440
1441
if (match[best_len] != scan_end ||
1442
match[best_len - 1] != scan_end1 ||
1443
*match != *scan ||
1444
*++match != scan[1]) continue;
1445
1446
/* The check at best_len - 1 can be removed because it will be made
1447
* again later. (This heuristic is not always a win.)
1448
* It is not necessary to compare scan[2] and match[2] since they
1449
* are always equal when the other bytes match, given that
1450
* the hash keys are equal and that HASH_BITS >= 8.
1451
*/
1452
scan += 2, match++;
1453
Assert(*scan == *match, "match[2]?");
1454
1455
/* We check for insufficient lookahead only every 8th comparison;
1456
* the 256th check will be made at strstart + 258.
1457
*/
1458
do {
1459
} while (*++scan == *++match && *++scan == *++match &&
1460
*++scan == *++match && *++scan == *++match &&
1461
*++scan == *++match && *++scan == *++match &&
1462
*++scan == *++match && *++scan == *++match &&
1463
scan < strend);
1464
1465
Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1466
"wild scan");
1467
1468
len = MAX_MATCH - (int)(strend - scan);
1469
scan = strend - MAX_MATCH;
1470
1471
#endif /* UNALIGNED_OK */
1472
1473
if (len > best_len) {
1474
s->match_start = cur_match;
1475
best_len = len;
1476
if (len >= nice_match) break;
1477
#ifdef UNALIGNED_OK
1478
scan_end = *(ushf*)(scan + best_len - 1);
1479
#else
1480
scan_end1 = scan[best_len - 1];
1481
scan_end = scan[best_len];
1482
#endif
1483
}
1484
} while ((cur_match = prev[cur_match & wmask]) > limit
1485
&& --chain_length != 0);
1486
1487
if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1488
return s->lookahead;
1489
}
1490
1491
#else /* FASTEST */
1492
1493
/* ---------------------------------------------------------------------------
1494
* Optimized version for FASTEST only
1495
*/
1496
local uInt longest_match(deflate_state *s, IPos cur_match) {
1497
register Bytef *scan = s->window + s->strstart; /* current string */
1498
register Bytef *match; /* matched string */
1499
register int len; /* length of current match */
1500
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1501
1502
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1503
* It is easy to get rid of this optimization if necessary.
1504
*/
1505
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1506
1507
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1508
"need lookahead");
1509
1510
Assert(cur_match < s->strstart, "no future");
1511
1512
match = s->window + cur_match;
1513
1514
/* Return failure if the match length is less than 2:
1515
*/
1516
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1517
1518
/* The check at best_len - 1 can be removed because it will be made
1519
* again later. (This heuristic is not always a win.)
1520
* It is not necessary to compare scan[2] and match[2] since they
1521
* are always equal when the other bytes match, given that
1522
* the hash keys are equal and that HASH_BITS >= 8.
1523
*/
1524
scan += 2, match += 2;
1525
Assert(*scan == *match, "match[2]?");
1526
1527
/* We check for insufficient lookahead only every 8th comparison;
1528
* the 256th check will be made at strstart + 258.
1529
*/
1530
do {
1531
} while (*++scan == *++match && *++scan == *++match &&
1532
*++scan == *++match && *++scan == *++match &&
1533
*++scan == *++match && *++scan == *++match &&
1534
*++scan == *++match && *++scan == *++match &&
1535
scan < strend);
1536
1537
Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1538
1539
len = MAX_MATCH - (int)(strend - scan);
1540
1541
if (len < MIN_MATCH) return MIN_MATCH - 1;
1542
1543
s->match_start = cur_match;
1544
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1545
}
1546
1547
#endif /* FASTEST */
1548
1549
#ifdef ZLIB_DEBUG
1550
1551
#define EQUAL 0
1552
/* result of memcmp for equal strings */
1553
1554
/* ===========================================================================
1555
* Check that the match at match_start is indeed a match.
1556
*/
1557
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1558
/* check that the match is indeed a match */
1559
Bytef *back = s->window + (int)match, *here = s->window + start;
1560
IPos len = length;
1561
if (match == (IPos)-1) {
1562
/* match starts one byte before the current window -- just compare the
1563
subsequent length-1 bytes */
1564
back++;
1565
here++;
1566
len--;
1567
}
1568
if (zmemcmp(back, here, len) != EQUAL) {
1569
fprintf(stderr, " start %u, match %d, length %d\n",
1570
start, (int)match, length);
1571
do {
1572
fprintf(stderr, "(%02x %02x)", *back++, *here++);
1573
} while (--len != 0);
1574
z_error("invalid match");
1575
}
1576
if (z_verbose > 1) {
1577
fprintf(stderr,"\\[%d,%d]", start - match, length);
1578
do { putc(s->window[start++], stderr); } while (--length != 0);
1579
}
1580
}
1581
#else
1582
# define check_match(s, start, match, length)
1583
#endif /* ZLIB_DEBUG */
1584
1585
/* ===========================================================================
1586
* Flush the current block, with given end-of-file flag.
1587
* IN assertion: strstart is set to the end of the current match.
1588
*/
1589
#define FLUSH_BLOCK_ONLY(s, last) { \
1590
_tr_flush_block(s, (s->block_start >= 0L ? \
1591
(charf *)&s->window[(unsigned)s->block_start] : \
1592
(charf *)Z_NULL), \
1593
(ulg)((long)s->strstart - s->block_start), \
1594
(last)); \
1595
s->block_start = s->strstart; \
1596
flush_pending(s->strm); \
1597
Tracev((stderr,"[FLUSH]")); \
1598
}
1599
1600
/* Same but force premature exit if necessary. */
1601
#define FLUSH_BLOCK(s, last) { \
1602
FLUSH_BLOCK_ONLY(s, last); \
1603
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1604
}
1605
1606
/* Maximum stored block length in deflate format (not including header). */
1607
#define MAX_STORED 65535
1608
1609
/* Minimum of a and b. */
1610
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1611
1612
/* ===========================================================================
1613
* Copy without compression as much as possible from the input stream, return
1614
* the current block state.
1615
*
1616
* In case deflateParams() is used to later switch to a non-zero compression
1617
* level, s->matches (otherwise unused when storing) keeps track of the number
1618
* of hash table slides to perform. If s->matches is 1, then one hash table
1619
* slide will be done when switching. If s->matches is 2, the maximum value
1620
* allowed here, then the hash table will be cleared, since two or more slides
1621
* is the same as a clear.
1622
*
1623
* deflate_stored() is written to minimize the number of times an input byte is
1624
* copied. It is most efficient with large input and output buffers, which
1625
* maximizes the opportunities to have a single copy from next_in to next_out.
1626
*/
1627
local block_state deflate_stored(deflate_state *s, int flush) {
1628
/* Smallest worthy block size when not flushing or finishing. By default
1629
* this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1630
* large input and output buffers, the stored block size will be larger.
1631
*/
1632
unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1633
1634
/* Copy as many min_block or larger stored blocks directly to next_out as
1635
* possible. If flushing, copy the remaining available input to next_out as
1636
* stored blocks, if there is enough space.
1637
*/
1638
unsigned len, left, have, last = 0;
1639
unsigned used = s->strm->avail_in;
1640
do {
1641
/* Set len to the maximum size block that we can copy directly with the
1642
* available input data and output space. Set left to how much of that
1643
* would be copied from what's left in the window.
1644
*/
1645
len = MAX_STORED; /* maximum deflate stored block length */
1646
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1647
if (s->strm->avail_out < have) /* need room for header */
1648
break;
1649
/* maximum stored block length that will fit in avail_out: */
1650
have = s->strm->avail_out - have;
1651
left = s->strstart - s->block_start; /* bytes left in window */
1652
if (len > (ulg)left + s->strm->avail_in)
1653
len = left + s->strm->avail_in; /* limit len to the input */
1654
if (len > have)
1655
len = have; /* limit len to the output */
1656
1657
/* If the stored block would be less than min_block in length, or if
1658
* unable to copy all of the available input when flushing, then try
1659
* copying to the window and the pending buffer instead. Also don't
1660
* write an empty block when flushing -- deflate() does that.
1661
*/
1662
if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1663
flush == Z_NO_FLUSH ||
1664
len != left + s->strm->avail_in))
1665
break;
1666
1667
/* Make a dummy stored block in pending to get the header bytes,
1668
* including any pending bits. This also updates the debugging counts.
1669
*/
1670
last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1671
_tr_stored_block(s, (char *)0, 0L, last);
1672
1673
/* Replace the lengths in the dummy stored block with len. */
1674
s->pending_buf[s->pending - 4] = len;
1675
s->pending_buf[s->pending - 3] = len >> 8;
1676
s->pending_buf[s->pending - 2] = ~len;
1677
s->pending_buf[s->pending - 1] = ~len >> 8;
1678
1679
/* Write the stored block header bytes. */
1680
flush_pending(s->strm);
1681
1682
#ifdef ZLIB_DEBUG
1683
/* Update debugging counts for the data about to be copied. */
1684
s->compressed_len += len << 3;
1685
s->bits_sent += len << 3;
1686
#endif
1687
1688
/* Copy uncompressed bytes from the window to next_out. */
1689
if (left) {
1690
if (left > len)
1691
left = len;
1692
zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1693
s->strm->next_out += left;
1694
s->strm->avail_out -= left;
1695
s->strm->total_out += left;
1696
s->block_start += left;
1697
len -= left;
1698
}
1699
1700
/* Copy uncompressed bytes directly from next_in to next_out, updating
1701
* the check value.
1702
*/
1703
if (len) {
1704
read_buf(s->strm, s->strm->next_out, len);
1705
s->strm->next_out += len;
1706
s->strm->avail_out -= len;
1707
s->strm->total_out += len;
1708
}
1709
} while (last == 0);
1710
1711
/* Update the sliding window with the last s->w_size bytes of the copied
1712
* data, or append all of the copied data to the existing window if less
1713
* than s->w_size bytes were copied. Also update the number of bytes to
1714
* insert in the hash tables, in the event that deflateParams() switches to
1715
* a non-zero compression level.
1716
*/
1717
used -= s->strm->avail_in; /* number of input bytes directly copied */
1718
if (used) {
1719
/* If any input was used, then no unused input remains in the window,
1720
* therefore s->block_start == s->strstart.
1721
*/
1722
if (used >= s->w_size) { /* supplant the previous history */
1723
s->matches = 2; /* clear hash */
1724
zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1725
s->strstart = s->w_size;
1726
s->insert = s->strstart;
1727
}
1728
else {
1729
if (s->window_size - s->strstart <= used) {
1730
/* Slide the window down. */
1731
s->strstart -= s->w_size;
1732
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1733
if (s->matches < 2)
1734
s->matches++; /* add a pending slide_hash() */
1735
if (s->insert > s->strstart)
1736
s->insert = s->strstart;
1737
}
1738
zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1739
s->strstart += used;
1740
s->insert += MIN(used, s->w_size - s->insert);
1741
}
1742
s->block_start = s->strstart;
1743
}
1744
if (s->high_water < s->strstart)
1745
s->high_water = s->strstart;
1746
1747
/* If the last block was written to next_out, then done. */
1748
if (last)
1749
return finish_done;
1750
1751
/* If flushing and all input has been consumed, then done. */
1752
if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1753
s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1754
return block_done;
1755
1756
/* Fill the window with any remaining input. */
1757
have = s->window_size - s->strstart;
1758
if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1759
/* Slide the window down. */
1760
s->block_start -= s->w_size;
1761
s->strstart -= s->w_size;
1762
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1763
if (s->matches < 2)
1764
s->matches++; /* add a pending slide_hash() */
1765
have += s->w_size; /* more space now */
1766
if (s->insert > s->strstart)
1767
s->insert = s->strstart;
1768
}
1769
if (have > s->strm->avail_in)
1770
have = s->strm->avail_in;
1771
if (have) {
1772
read_buf(s->strm, s->window + s->strstart, have);
1773
s->strstart += have;
1774
s->insert += MIN(have, s->w_size - s->insert);
1775
}
1776
if (s->high_water < s->strstart)
1777
s->high_water = s->strstart;
1778
1779
/* There was not enough avail_out to write a complete worthy or flushed
1780
* stored block to next_out. Write a stored block to pending instead, if we
1781
* have enough input for a worthy block, or if flushing and there is enough
1782
* room for the remaining input as a stored block in the pending buffer.
1783
*/
1784
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1785
/* maximum stored block length that will fit in pending: */
1786
have = MIN(s->pending_buf_size - have, MAX_STORED);
1787
min_block = MIN(have, s->w_size);
1788
left = s->strstart - s->block_start;
1789
if (left >= min_block ||
1790
((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1791
s->strm->avail_in == 0 && left <= have)) {
1792
len = MIN(left, have);
1793
last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1794
len == left ? 1 : 0;
1795
_tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1796
s->block_start += len;
1797
flush_pending(s->strm);
1798
}
1799
1800
/* We've done all we can with the available input and output. */
1801
return last ? finish_started : need_more;
1802
}
1803
1804
/* ===========================================================================
1805
* Compress as much as possible from the input stream, return the current
1806
* block state.
1807
* This function does not perform lazy evaluation of matches and inserts
1808
* new strings in the dictionary only for unmatched strings or for short
1809
* matches. It is used only for the fast compression options.
1810
*/
1811
local block_state deflate_fast(deflate_state *s, int flush) {
1812
IPos hash_head; /* head of the hash chain */
1813
int bflush; /* set if current block must be flushed */
1814
1815
for (;;) {
1816
/* Make sure that we always have enough lookahead, except
1817
* at the end of the input file. We need MAX_MATCH bytes
1818
* for the next match, plus MIN_MATCH bytes to insert the
1819
* string following the next match.
1820
*/
1821
if (s->lookahead < MIN_LOOKAHEAD) {
1822
fill_window(s);
1823
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1824
return need_more;
1825
}
1826
if (s->lookahead == 0) break; /* flush the current block */
1827
}
1828
1829
/* Insert the string window[strstart .. strstart + 2] in the
1830
* dictionary, and set hash_head to the head of the hash chain:
1831
*/
1832
hash_head = NIL;
1833
if (s->lookahead >= MIN_MATCH) {
1834
INSERT_STRING(s, s->strstart, hash_head);
1835
}
1836
1837
/* Find the longest match, discarding those <= prev_length.
1838
* At this point we have always match_length < MIN_MATCH
1839
*/
1840
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1841
/* To simplify the code, we prevent matches with the string
1842
* of window index 0 (in particular we have to avoid a match
1843
* of the string with itself at the start of the input file).
1844
*/
1845
s->match_length = longest_match (s, hash_head);
1846
/* longest_match() sets match_start */
1847
}
1848
if (s->match_length >= MIN_MATCH) {
1849
check_match(s, s->strstart, s->match_start, s->match_length);
1850
1851
_tr_tally_dist(s, s->strstart - s->match_start,
1852
s->match_length - MIN_MATCH, bflush);
1853
1854
s->lookahead -= s->match_length;
1855
1856
/* Insert new strings in the hash table only if the match length
1857
* is not too large. This saves time but degrades compression.
1858
*/
1859
#ifndef FASTEST
1860
if (s->match_length <= s->max_insert_length &&
1861
s->lookahead >= MIN_MATCH) {
1862
s->match_length--; /* string at strstart already in table */
1863
do {
1864
s->strstart++;
1865
INSERT_STRING(s, s->strstart, hash_head);
1866
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
1867
* always MIN_MATCH bytes ahead.
1868
*/
1869
} while (--s->match_length != 0);
1870
s->strstart++;
1871
} else
1872
#endif
1873
{
1874
s->strstart += s->match_length;
1875
s->match_length = 0;
1876
s->ins_h = s->window[s->strstart];
1877
UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1878
#if MIN_MATCH != 3
1879
Call UPDATE_HASH() MIN_MATCH-3 more times
1880
#endif
1881
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1882
* matter since it will be recomputed at next deflate call.
1883
*/
1884
}
1885
} else {
1886
/* No match, output a literal byte */
1887
Tracevv((stderr,"%c", s->window[s->strstart]));
1888
_tr_tally_lit(s, s->window[s->strstart], bflush);
1889
s->lookahead--;
1890
s->strstart++;
1891
}
1892
if (bflush) FLUSH_BLOCK(s, 0);
1893
}
1894
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1895
if (flush == Z_FINISH) {
1896
FLUSH_BLOCK(s, 1);
1897
return finish_done;
1898
}
1899
if (s->sym_next)
1900
FLUSH_BLOCK(s, 0);
1901
return block_done;
1902
}
1903
1904
#ifndef FASTEST
1905
/* ===========================================================================
1906
* Same as above, but achieves better compression. We use a lazy
1907
* evaluation for matches: a match is finally adopted only if there is
1908
* no better match at the next window position.
1909
*/
1910
local block_state deflate_slow(deflate_state *s, int flush) {
1911
IPos hash_head; /* head of hash chain */
1912
int bflush; /* set if current block must be flushed */
1913
1914
/* Process the input block. */
1915
for (;;) {
1916
/* Make sure that we always have enough lookahead, except
1917
* at the end of the input file. We need MAX_MATCH bytes
1918
* for the next match, plus MIN_MATCH bytes to insert the
1919
* string following the next match.
1920
*/
1921
if (s->lookahead < MIN_LOOKAHEAD) {
1922
fill_window(s);
1923
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1924
return need_more;
1925
}
1926
if (s->lookahead == 0) break; /* flush the current block */
1927
}
1928
1929
/* Insert the string window[strstart .. strstart + 2] in the
1930
* dictionary, and set hash_head to the head of the hash chain:
1931
*/
1932
hash_head = NIL;
1933
if (s->lookahead >= MIN_MATCH) {
1934
INSERT_STRING(s, s->strstart, hash_head);
1935
}
1936
1937
/* Find the longest match, discarding those <= prev_length.
1938
*/
1939
s->prev_length = s->match_length, s->prev_match = s->match_start;
1940
s->match_length = MIN_MATCH-1;
1941
1942
if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1943
s->strstart - hash_head <= MAX_DIST(s)) {
1944
/* To simplify the code, we prevent matches with the string
1945
* of window index 0 (in particular we have to avoid a match
1946
* of the string with itself at the start of the input file).
1947
*/
1948
s->match_length = longest_match (s, hash_head);
1949
/* longest_match() sets match_start */
1950
1951
if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1952
#if TOO_FAR <= 32767
1953
|| (s->match_length == MIN_MATCH &&
1954
s->strstart - s->match_start > TOO_FAR)
1955
#endif
1956
)) {
1957
1958
/* If prev_match is also MIN_MATCH, match_start is garbage
1959
* but we will ignore the current match anyway.
1960
*/
1961
s->match_length = MIN_MATCH-1;
1962
}
1963
}
1964
/* If there was a match at the previous step and the current
1965
* match is not better, output the previous match:
1966
*/
1967
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1968
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1969
/* Do not insert strings in hash table beyond this. */
1970
1971
check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1972
1973
_tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1974
s->prev_length - MIN_MATCH, bflush);
1975
1976
/* Insert in hash table all strings up to the end of the match.
1977
* strstart - 1 and strstart are already inserted. If there is not
1978
* enough lookahead, the last two strings are not inserted in
1979
* the hash table.
1980
*/
1981
s->lookahead -= s->prev_length - 1;
1982
s->prev_length -= 2;
1983
do {
1984
if (++s->strstart <= max_insert) {
1985
INSERT_STRING(s, s->strstart, hash_head);
1986
}
1987
} while (--s->prev_length != 0);
1988
s->match_available = 0;
1989
s->match_length = MIN_MATCH-1;
1990
s->strstart++;
1991
1992
if (bflush) FLUSH_BLOCK(s, 0);
1993
1994
} else if (s->match_available) {
1995
/* If there was no match at the previous position, output a
1996
* single literal. If there was a match but the current match
1997
* is longer, truncate the previous match to a single literal.
1998
*/
1999
Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2000
_tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2001
if (bflush) {
2002
FLUSH_BLOCK_ONLY(s, 0);
2003
}
2004
s->strstart++;
2005
s->lookahead--;
2006
if (s->strm->avail_out == 0) return need_more;
2007
} else {
2008
/* There is no previous match to compare with, wait for
2009
* the next step to decide.
2010
*/
2011
s->match_available = 1;
2012
s->strstart++;
2013
s->lookahead--;
2014
}
2015
}
2016
Assert (flush != Z_NO_FLUSH, "no flush?");
2017
if (s->match_available) {
2018
Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2019
_tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2020
s->match_available = 0;
2021
}
2022
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2023
if (flush == Z_FINISH) {
2024
FLUSH_BLOCK(s, 1);
2025
return finish_done;
2026
}
2027
if (s->sym_next)
2028
FLUSH_BLOCK(s, 0);
2029
return block_done;
2030
}
2031
#endif /* FASTEST */
2032
2033
/* ===========================================================================
2034
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
2035
* one. Do not maintain a hash table. (It will be regenerated if this run of
2036
* deflate switches away from Z_RLE.)
2037
*/
2038
local block_state deflate_rle(deflate_state *s, int flush) {
2039
int bflush; /* set if current block must be flushed */
2040
uInt prev; /* byte at distance one to match */
2041
Bytef *scan, *strend; /* scan goes up to strend for length of run */
2042
2043
for (;;) {
2044
/* Make sure that we always have enough lookahead, except
2045
* at the end of the input file. We need MAX_MATCH bytes
2046
* for the longest run, plus one for the unrolled loop.
2047
*/
2048
if (s->lookahead <= MAX_MATCH) {
2049
fill_window(s);
2050
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2051
return need_more;
2052
}
2053
if (s->lookahead == 0) break; /* flush the current block */
2054
}
2055
2056
/* See how many times the previous byte repeats */
2057
s->match_length = 0;
2058
if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2059
scan = s->window + s->strstart - 1;
2060
prev = *scan;
2061
if (prev == *++scan && prev == *++scan && prev == *++scan) {
2062
strend = s->window + s->strstart + MAX_MATCH;
2063
do {
2064
} while (prev == *++scan && prev == *++scan &&
2065
prev == *++scan && prev == *++scan &&
2066
prev == *++scan && prev == *++scan &&
2067
prev == *++scan && prev == *++scan &&
2068
scan < strend);
2069
s->match_length = MAX_MATCH - (uInt)(strend - scan);
2070
if (s->match_length > s->lookahead)
2071
s->match_length = s->lookahead;
2072
}
2073
Assert(scan <= s->window + (uInt)(s->window_size - 1),
2074
"wild scan");
2075
}
2076
2077
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
2078
if (s->match_length >= MIN_MATCH) {
2079
check_match(s, s->strstart, s->strstart - 1, s->match_length);
2080
2081
_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2082
2083
s->lookahead -= s->match_length;
2084
s->strstart += s->match_length;
2085
s->match_length = 0;
2086
} else {
2087
/* No match, output a literal byte */
2088
Tracevv((stderr,"%c", s->window[s->strstart]));
2089
_tr_tally_lit(s, s->window[s->strstart], bflush);
2090
s->lookahead--;
2091
s->strstart++;
2092
}
2093
if (bflush) FLUSH_BLOCK(s, 0);
2094
}
2095
s->insert = 0;
2096
if (flush == Z_FINISH) {
2097
FLUSH_BLOCK(s, 1);
2098
return finish_done;
2099
}
2100
if (s->sym_next)
2101
FLUSH_BLOCK(s, 0);
2102
return block_done;
2103
}
2104
2105
/* ===========================================================================
2106
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2107
* (It will be regenerated if this run of deflate switches away from Huffman.)
2108
*/
2109
local block_state deflate_huff(deflate_state *s, int flush) {
2110
int bflush; /* set if current block must be flushed */
2111
2112
for (;;) {
2113
/* Make sure that we have a literal to write. */
2114
if (s->lookahead == 0) {
2115
fill_window(s);
2116
if (s->lookahead == 0) {
2117
if (flush == Z_NO_FLUSH)
2118
return need_more;
2119
break; /* flush the current block */
2120
}
2121
}
2122
2123
/* Output a literal byte */
2124
s->match_length = 0;
2125
Tracevv((stderr,"%c", s->window[s->strstart]));
2126
_tr_tally_lit(s, s->window[s->strstart], bflush);
2127
s->lookahead--;
2128
s->strstart++;
2129
if (bflush) FLUSH_BLOCK(s, 0);
2130
}
2131
s->insert = 0;
2132
if (flush == Z_FINISH) {
2133
FLUSH_BLOCK(s, 1);
2134
return finish_done;
2135
}
2136
if (s->sym_next)
2137
FLUSH_BLOCK(s, 0);
2138
return block_done;
2139
}
2140
2141