Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/zlib/trees.c
4389 views
1
/* trees.c -- output deflated data using Huffman coding
2
* Copyright (C) 1995-2024 Jean-loup Gailly
3
* detect_data_type() function provided freely by Cosmin Truta, 2006
4
* For conditions of distribution and use, see copyright notice in zlib.h
5
*/
6
7
/*
8
* ALGORITHM
9
*
10
* The "deflation" process uses several Huffman trees. The more
11
* common source values are represented by shorter bit sequences.
12
*
13
* Each code tree is stored in a compressed form which is itself
14
* a Huffman encoding of the lengths of all the code strings (in
15
* ascending order by source values). The actual code strings are
16
* reconstructed from the lengths in the inflate process, as described
17
* in the deflate specification.
18
*
19
* REFERENCES
20
*
21
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
*
24
* Storer, James A.
25
* Data Compression: Methods and Theory, pp. 49-50.
26
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
27
*
28
* Sedgewick, R.
29
* Algorithms, p290.
30
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
*/
32
33
/* @(#) $Id$ */
34
35
/* #define GEN_TREES_H */
36
37
#include "deflate.h"
38
39
#ifdef ZLIB_DEBUG
40
# include <ctype.h>
41
#endif
42
43
/* ===========================================================================
44
* Constants
45
*/
46
47
#define MAX_BL_BITS 7
48
/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50
#define END_BLOCK 256
51
/* end of block literal code */
52
53
#define REP_3_6 16
54
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56
#define REPZ_3_10 17
57
/* repeat a zero length 3-10 times (3 bits of repeat count) */
58
59
#define REPZ_11_138 18
60
/* repeat a zero length 11-138 times (7 bits of repeat count) */
61
62
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71
local const uch bl_order[BL_CODES]
72
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73
/* The lengths of the bit length codes are sent in order of decreasing
74
* probability, to avoid transmitting the lengths for unused bit length codes.
75
*/
76
77
/* ===========================================================================
78
* Local data. These are initialized only once.
79
*/
80
81
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82
83
#if defined(GEN_TREES_H) || !defined(STDC)
84
/* non ANSI compilers may not accept trees.h */
85
86
local ct_data static_ltree[L_CODES+2];
87
/* The static literal tree. Since the bit lengths are imposed, there is no
88
* need for the L_CODES extra codes used during heap construction. However
89
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90
* below).
91
*/
92
93
local ct_data static_dtree[D_CODES];
94
/* The static distance tree. (Actually a trivial tree since all codes use
95
* 5 bits.)
96
*/
97
98
uch _dist_code[DIST_CODE_LEN];
99
/* Distance codes. The first 256 values correspond to the distances
100
* 3 .. 258, the last 256 values correspond to the top 8 bits of
101
* the 15 bit distances.
102
*/
103
104
uch _length_code[MAX_MATCH-MIN_MATCH+1];
105
/* length code for each normalized match length (0 == MIN_MATCH) */
106
107
local int base_length[LENGTH_CODES];
108
/* First normalized length for each code (0 = MIN_MATCH) */
109
110
local int base_dist[D_CODES];
111
/* First normalized distance for each code (0 = distance of 1) */
112
113
#else
114
# include "trees.h"
115
#endif /* GEN_TREES_H */
116
117
struct static_tree_desc_s {
118
const ct_data *static_tree; /* static tree or NULL */
119
const intf *extra_bits; /* extra bits for each code or NULL */
120
int extra_base; /* base index for extra_bits */
121
int elems; /* max number of elements in the tree */
122
int max_length; /* max bit length for the codes */
123
};
124
125
#ifdef NO_INIT_GLOBAL_POINTERS
126
# define TCONST
127
#else
128
# define TCONST const
129
#endif
130
131
local TCONST static_tree_desc static_l_desc =
132
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134
local TCONST static_tree_desc static_d_desc =
135
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
136
137
local TCONST static_tree_desc static_bl_desc =
138
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
139
140
/* ===========================================================================
141
* Output a short LSB first on the stream.
142
* IN assertion: there is enough room in pendingBuf.
143
*/
144
#define put_short(s, w) { \
145
put_byte(s, (uch)((w) & 0xff)); \
146
put_byte(s, (uch)((ush)(w) >> 8)); \
147
}
148
149
/* ===========================================================================
150
* Reverse the first len bits of a code, using straightforward code (a faster
151
* method would use a table)
152
* IN assertion: 1 <= len <= 15
153
*/
154
local unsigned bi_reverse(unsigned code, int len) {
155
register unsigned res = 0;
156
do {
157
res |= code & 1;
158
code >>= 1, res <<= 1;
159
} while (--len > 0);
160
return res >> 1;
161
}
162
163
/* ===========================================================================
164
* Flush the bit buffer, keeping at most 7 bits in it.
165
*/
166
local void bi_flush(deflate_state *s) {
167
if (s->bi_valid == 16) {
168
put_short(s, s->bi_buf);
169
s->bi_buf = 0;
170
s->bi_valid = 0;
171
} else if (s->bi_valid >= 8) {
172
put_byte(s, (Byte)s->bi_buf);
173
s->bi_buf >>= 8;
174
s->bi_valid -= 8;
175
}
176
}
177
178
/* ===========================================================================
179
* Flush the bit buffer and align the output on a byte boundary
180
*/
181
local void bi_windup(deflate_state *s) {
182
if (s->bi_valid > 8) {
183
put_short(s, s->bi_buf);
184
} else if (s->bi_valid > 0) {
185
put_byte(s, (Byte)s->bi_buf);
186
}
187
s->bi_buf = 0;
188
s->bi_valid = 0;
189
#ifdef ZLIB_DEBUG
190
s->bits_sent = (s->bits_sent + 7) & ~7;
191
#endif
192
}
193
194
/* ===========================================================================
195
* Generate the codes for a given tree and bit counts (which need not be
196
* optimal).
197
* IN assertion: the array bl_count contains the bit length statistics for
198
* the given tree and the field len is set for all tree elements.
199
* OUT assertion: the field code is set for all tree elements of non
200
* zero code length.
201
*/
202
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204
unsigned code = 0; /* running code value */
205
int bits; /* bit index */
206
int n; /* code index */
207
208
/* The distribution counts are first used to generate the code values
209
* without bit reversal.
210
*/
211
for (bits = 1; bits <= MAX_BITS; bits++) {
212
code = (code + bl_count[bits - 1]) << 1;
213
next_code[bits] = (ush)code;
214
}
215
/* Check that the bit counts in bl_count are consistent. The last code
216
* must be all ones.
217
*/
218
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219
"inconsistent bit counts");
220
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221
222
for (n = 0; n <= max_code; n++) {
223
int len = tree[n].Len;
224
if (len == 0) continue;
225
/* Now reverse the bits */
226
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227
228
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230
}
231
}
232
233
#ifdef GEN_TREES_H
234
local void gen_trees_header(void);
235
#endif
236
237
#ifndef ZLIB_DEBUG
238
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239
/* Send a code of the given tree. c and tree must not have side effects */
240
241
#else /* !ZLIB_DEBUG */
242
# define send_code(s, c, tree) \
243
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244
send_bits(s, tree[c].Code, tree[c].Len); }
245
#endif
246
247
/* ===========================================================================
248
* Send a value on a given number of bits.
249
* IN assertion: length <= 16 and value fits in length bits.
250
*/
251
#ifdef ZLIB_DEBUG
252
local void send_bits(deflate_state *s, int value, int length) {
253
Tracevv((stderr," l %2d v %4x ", length, value));
254
Assert(length > 0 && length <= 15, "invalid length");
255
s->bits_sent += (ulg)length;
256
257
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
258
* (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
259
* unused bits in value.
260
*/
261
if (s->bi_valid > (int)Buf_size - length) {
262
s->bi_buf |= (ush)value << s->bi_valid;
263
put_short(s, s->bi_buf);
264
s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265
s->bi_valid += length - Buf_size;
266
} else {
267
s->bi_buf |= (ush)value << s->bi_valid;
268
s->bi_valid += length;
269
}
270
}
271
#else /* !ZLIB_DEBUG */
272
273
#define send_bits(s, value, length) \
274
{ int len = length;\
275
if (s->bi_valid > (int)Buf_size - len) {\
276
int val = (int)value;\
277
s->bi_buf |= (ush)val << s->bi_valid;\
278
put_short(s, s->bi_buf);\
279
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280
s->bi_valid += len - Buf_size;\
281
} else {\
282
s->bi_buf |= (ush)(value) << s->bi_valid;\
283
s->bi_valid += len;\
284
}\
285
}
286
#endif /* ZLIB_DEBUG */
287
288
289
/* the arguments must not have side effects */
290
291
/* ===========================================================================
292
* Initialize the various 'constant' tables.
293
*/
294
local void tr_static_init(void) {
295
#if defined(GEN_TREES_H) || !defined(STDC)
296
static int static_init_done = 0;
297
int n; /* iterates over tree elements */
298
int bits; /* bit counter */
299
int length; /* length value */
300
int code; /* code value */
301
int dist; /* distance index */
302
ush bl_count[MAX_BITS+1];
303
/* number of codes at each bit length for an optimal tree */
304
305
if (static_init_done) return;
306
307
/* For some embedded targets, global variables are not initialized: */
308
#ifdef NO_INIT_GLOBAL_POINTERS
309
static_l_desc.static_tree = static_ltree;
310
static_l_desc.extra_bits = extra_lbits;
311
static_d_desc.static_tree = static_dtree;
312
static_d_desc.extra_bits = extra_dbits;
313
static_bl_desc.extra_bits = extra_blbits;
314
#endif
315
316
/* Initialize the mapping length (0..255) -> length code (0..28) */
317
length = 0;
318
for (code = 0; code < LENGTH_CODES-1; code++) {
319
base_length[code] = length;
320
for (n = 0; n < (1 << extra_lbits[code]); n++) {
321
_length_code[length++] = (uch)code;
322
}
323
}
324
Assert (length == 256, "tr_static_init: length != 256");
325
/* Note that the length 255 (match length 258) can be represented
326
* in two different ways: code 284 + 5 bits or code 285, so we
327
* overwrite length_code[255] to use the best encoding:
328
*/
329
_length_code[length - 1] = (uch)code;
330
331
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332
dist = 0;
333
for (code = 0 ; code < 16; code++) {
334
base_dist[code] = dist;
335
for (n = 0; n < (1 << extra_dbits[code]); n++) {
336
_dist_code[dist++] = (uch)code;
337
}
338
}
339
Assert (dist == 256, "tr_static_init: dist != 256");
340
dist >>= 7; /* from now on, all distances are divided by 128 */
341
for ( ; code < D_CODES; code++) {
342
base_dist[code] = dist << 7;
343
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
344
_dist_code[256 + dist++] = (uch)code;
345
}
346
}
347
Assert (dist == 256, "tr_static_init: 256 + dist != 512");
348
349
/* Construct the codes of the static literal tree */
350
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351
n = 0;
352
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356
/* Codes 286 and 287 do not exist, but we must include them in the
357
* tree construction to get a canonical Huffman tree (longest code
358
* all ones)
359
*/
360
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361
362
/* The static distance tree is trivial: */
363
for (n = 0; n < D_CODES; n++) {
364
static_dtree[n].Len = 5;
365
static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366
}
367
static_init_done = 1;
368
369
# ifdef GEN_TREES_H
370
gen_trees_header();
371
# endif
372
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
373
}
374
375
/* ===========================================================================
376
* Generate the file trees.h describing the static trees.
377
*/
378
#ifdef GEN_TREES_H
379
# ifndef ZLIB_DEBUG
380
# include <stdio.h>
381
# endif
382
383
# define SEPARATOR(i, last, width) \
384
((i) == (last)? "\n};\n\n" : \
385
((i) % (width) == (width) - 1 ? ",\n" : ", "))
386
387
void gen_trees_header(void) {
388
FILE *header = fopen("trees.h", "w");
389
int i;
390
391
Assert (header != NULL, "Can't open trees.h");
392
fprintf(header,
393
"/* header created automatically with -DGEN_TREES_H */\n\n");
394
395
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396
for (i = 0; i < L_CODES+2; i++) {
397
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399
}
400
401
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402
for (i = 0; i < D_CODES; i++) {
403
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405
}
406
407
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408
for (i = 0; i < DIST_CODE_LEN; i++) {
409
fprintf(header, "%2u%s", _dist_code[i],
410
SEPARATOR(i, DIST_CODE_LEN-1, 20));
411
}
412
413
fprintf(header,
414
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416
fprintf(header, "%2u%s", _length_code[i],
417
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418
}
419
420
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421
for (i = 0; i < LENGTH_CODES; i++) {
422
fprintf(header, "%1u%s", base_length[i],
423
SEPARATOR(i, LENGTH_CODES-1, 20));
424
}
425
426
fprintf(header, "local const int base_dist[D_CODES] = {\n");
427
for (i = 0; i < D_CODES; i++) {
428
fprintf(header, "%5u%s", base_dist[i],
429
SEPARATOR(i, D_CODES-1, 10));
430
}
431
432
fclose(header);
433
}
434
#endif /* GEN_TREES_H */
435
436
/* ===========================================================================
437
* Initialize a new block.
438
*/
439
local void init_block(deflate_state *s) {
440
int n; /* iterates over tree elements */
441
442
/* Initialize the trees. */
443
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
444
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
445
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446
447
s->dyn_ltree[END_BLOCK].Freq = 1;
448
s->opt_len = s->static_len = 0L;
449
s->sym_next = s->matches = 0;
450
}
451
452
/* ===========================================================================
453
* Initialize the tree data structures for a new zlib stream.
454
*/
455
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
456
tr_static_init();
457
458
s->l_desc.dyn_tree = s->dyn_ltree;
459
s->l_desc.stat_desc = &static_l_desc;
460
461
s->d_desc.dyn_tree = s->dyn_dtree;
462
s->d_desc.stat_desc = &static_d_desc;
463
464
s->bl_desc.dyn_tree = s->bl_tree;
465
s->bl_desc.stat_desc = &static_bl_desc;
466
467
s->bi_buf = 0;
468
s->bi_valid = 0;
469
#ifdef ZLIB_DEBUG
470
s->compressed_len = 0L;
471
s->bits_sent = 0L;
472
#endif
473
474
/* Initialize the first block of the first file: */
475
init_block(s);
476
}
477
478
#define SMALLEST 1
479
/* Index within the heap array of least frequent node in the Huffman tree */
480
481
482
/* ===========================================================================
483
* Remove the smallest element from the heap and recreate the heap with
484
* one less element. Updates heap and heap_len.
485
*/
486
#define pqremove(s, tree, top) \
487
{\
488
top = s->heap[SMALLEST]; \
489
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
490
pqdownheap(s, tree, SMALLEST); \
491
}
492
493
/* ===========================================================================
494
* Compares to subtrees, using the tree depth as tie breaker when
495
* the subtrees have equal frequency. This minimizes the worst case length.
496
*/
497
#define smaller(tree, n, m, depth) \
498
(tree[n].Freq < tree[m].Freq || \
499
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
500
501
/* ===========================================================================
502
* Restore the heap property by moving down the tree starting at node k,
503
* exchanging a node with the smallest of its two sons if necessary, stopping
504
* when the heap property is re-established (each father smaller than its
505
* two sons).
506
*/
507
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
508
int v = s->heap[k];
509
int j = k << 1; /* left son of k */
510
while (j <= s->heap_len) {
511
/* Set j to the smallest of the two sons: */
512
if (j < s->heap_len &&
513
smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
514
j++;
515
}
516
/* Exit if v is smaller than both sons */
517
if (smaller(tree, v, s->heap[j], s->depth)) break;
518
519
/* Exchange v with the smallest son */
520
s->heap[k] = s->heap[j]; k = j;
521
522
/* And continue down the tree, setting j to the left son of k */
523
j <<= 1;
524
}
525
s->heap[k] = v;
526
}
527
528
/* ===========================================================================
529
* Compute the optimal bit lengths for a tree and update the total bit length
530
* for the current block.
531
* IN assertion: the fields freq and dad are set, heap[heap_max] and
532
* above are the tree nodes sorted by increasing frequency.
533
* OUT assertions: the field len is set to the optimal bit length, the
534
* array bl_count contains the frequencies for each bit length.
535
* The length opt_len is updated; static_len is also updated if stree is
536
* not null.
537
*/
538
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
539
ct_data *tree = desc->dyn_tree;
540
int max_code = desc->max_code;
541
const ct_data *stree = desc->stat_desc->static_tree;
542
const intf *extra = desc->stat_desc->extra_bits;
543
int base = desc->stat_desc->extra_base;
544
int max_length = desc->stat_desc->max_length;
545
int h; /* heap index */
546
int n, m; /* iterate over the tree elements */
547
int bits; /* bit length */
548
int xbits; /* extra bits */
549
ush f; /* frequency */
550
int overflow = 0; /* number of elements with bit length too large */
551
552
for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
553
554
/* In a first pass, compute the optimal bit lengths (which may
555
* overflow in the case of the bit length tree).
556
*/
557
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
558
559
for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
560
n = s->heap[h];
561
bits = tree[tree[n].Dad].Len + 1;
562
if (bits > max_length) bits = max_length, overflow++;
563
tree[n].Len = (ush)bits;
564
/* We overwrite tree[n].Dad which is no longer needed */
565
566
if (n > max_code) continue; /* not a leaf node */
567
568
s->bl_count[bits]++;
569
xbits = 0;
570
if (n >= base) xbits = extra[n - base];
571
f = tree[n].Freq;
572
s->opt_len += (ulg)f * (unsigned)(bits + xbits);
573
if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
574
}
575
if (overflow == 0) return;
576
577
Tracev((stderr,"\nbit length overflow\n"));
578
/* This happens for example on obj2 and pic of the Calgary corpus */
579
580
/* Find the first bit length which could increase: */
581
do {
582
bits = max_length - 1;
583
while (s->bl_count[bits] == 0) bits--;
584
s->bl_count[bits]--; /* move one leaf down the tree */
585
s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
586
s->bl_count[max_length]--;
587
/* The brother of the overflow item also moves one step up,
588
* but this does not affect bl_count[max_length]
589
*/
590
overflow -= 2;
591
} while (overflow > 0);
592
593
/* Now recompute all bit lengths, scanning in increasing frequency.
594
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
595
* lengths instead of fixing only the wrong ones. This idea is taken
596
* from 'ar' written by Haruhiko Okumura.)
597
*/
598
for (bits = max_length; bits != 0; bits--) {
599
n = s->bl_count[bits];
600
while (n != 0) {
601
m = s->heap[--h];
602
if (m > max_code) continue;
603
if ((unsigned) tree[m].Len != (unsigned) bits) {
604
Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
605
s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
606
tree[m].Len = (ush)bits;
607
}
608
n--;
609
}
610
}
611
}
612
613
#ifdef DUMP_BL_TREE
614
# include <stdio.h>
615
#endif
616
617
/* ===========================================================================
618
* Construct one Huffman tree and assigns the code bit strings and lengths.
619
* Update the total bit length for the current block.
620
* IN assertion: the field freq is set for all tree elements.
621
* OUT assertions: the fields len and code are set to the optimal bit length
622
* and corresponding code. The length opt_len is updated; static_len is
623
* also updated if stree is not null. The field max_code is set.
624
*/
625
local void build_tree(deflate_state *s, tree_desc *desc) {
626
ct_data *tree = desc->dyn_tree;
627
const ct_data *stree = desc->stat_desc->static_tree;
628
int elems = desc->stat_desc->elems;
629
int n, m; /* iterate over heap elements */
630
int max_code = -1; /* largest code with non zero frequency */
631
int node; /* new node being created */
632
633
/* Construct the initial heap, with least frequent element in
634
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635
* heap[0] is not used.
636
*/
637
s->heap_len = 0, s->heap_max = HEAP_SIZE;
638
639
for (n = 0; n < elems; n++) {
640
if (tree[n].Freq != 0) {
641
s->heap[++(s->heap_len)] = max_code = n;
642
s->depth[n] = 0;
643
} else {
644
tree[n].Len = 0;
645
}
646
}
647
648
/* The pkzip format requires that at least one distance code exists,
649
* and that at least one bit should be sent even if there is only one
650
* possible code. So to avoid special checks later on we force at least
651
* two codes of non zero frequency.
652
*/
653
while (s->heap_len < 2) {
654
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655
tree[node].Freq = 1;
656
s->depth[node] = 0;
657
s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658
/* node is 0 or 1 so it does not have extra bits */
659
}
660
desc->max_code = max_code;
661
662
/* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663
* establish sub-heaps of increasing lengths:
664
*/
665
for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666
667
/* Construct the Huffman tree by repeatedly combining the least two
668
* frequent nodes.
669
*/
670
node = elems; /* next internal node of the tree */
671
do {
672
pqremove(s, tree, n); /* n = node of least frequency */
673
m = s->heap[SMALLEST]; /* m = node of next least frequency */
674
675
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676
s->heap[--(s->heap_max)] = m;
677
678
/* Create a new node father of n and m */
679
tree[node].Freq = tree[n].Freq + tree[m].Freq;
680
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681
s->depth[n] : s->depth[m]) + 1);
682
tree[n].Dad = tree[m].Dad = (ush)node;
683
#ifdef DUMP_BL_TREE
684
if (tree == s->bl_tree) {
685
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687
}
688
#endif
689
/* and insert the new node in the heap */
690
s->heap[SMALLEST] = node++;
691
pqdownheap(s, tree, SMALLEST);
692
693
} while (s->heap_len >= 2);
694
695
s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696
697
/* At this point, the fields freq and dad are set. We can now
698
* generate the bit lengths.
699
*/
700
gen_bitlen(s, (tree_desc *)desc);
701
702
/* The field len is now set, we can generate the bit codes */
703
gen_codes ((ct_data *)tree, max_code, s->bl_count);
704
}
705
706
/* ===========================================================================
707
* Scan a literal or distance tree to determine the frequencies of the codes
708
* in the bit length tree.
709
*/
710
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
711
int n; /* iterates over all tree elements */
712
int prevlen = -1; /* last emitted length */
713
int curlen; /* length of current code */
714
int nextlen = tree[0].Len; /* length of next code */
715
int count = 0; /* repeat count of the current code */
716
int max_count = 7; /* max repeat count */
717
int min_count = 4; /* min repeat count */
718
719
if (nextlen == 0) max_count = 138, min_count = 3;
720
tree[max_code + 1].Len = (ush)0xffff; /* guard */
721
722
for (n = 0; n <= max_code; n++) {
723
curlen = nextlen; nextlen = tree[n + 1].Len;
724
if (++count < max_count && curlen == nextlen) {
725
continue;
726
} else if (count < min_count) {
727
s->bl_tree[curlen].Freq += count;
728
} else if (curlen != 0) {
729
if (curlen != prevlen) s->bl_tree[curlen].Freq++;
730
s->bl_tree[REP_3_6].Freq++;
731
} else if (count <= 10) {
732
s->bl_tree[REPZ_3_10].Freq++;
733
} else {
734
s->bl_tree[REPZ_11_138].Freq++;
735
}
736
count = 0; prevlen = curlen;
737
if (nextlen == 0) {
738
max_count = 138, min_count = 3;
739
} else if (curlen == nextlen) {
740
max_count = 6, min_count = 3;
741
} else {
742
max_count = 7, min_count = 4;
743
}
744
}
745
}
746
747
/* ===========================================================================
748
* Send a literal or distance tree in compressed form, using the codes in
749
* bl_tree.
750
*/
751
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
752
int n; /* iterates over all tree elements */
753
int prevlen = -1; /* last emitted length */
754
int curlen; /* length of current code */
755
int nextlen = tree[0].Len; /* length of next code */
756
int count = 0; /* repeat count of the current code */
757
int max_count = 7; /* max repeat count */
758
int min_count = 4; /* min repeat count */
759
760
/* tree[max_code + 1].Len = -1; */ /* guard already set */
761
if (nextlen == 0) max_count = 138, min_count = 3;
762
763
for (n = 0; n <= max_code; n++) {
764
curlen = nextlen; nextlen = tree[n + 1].Len;
765
if (++count < max_count && curlen == nextlen) {
766
continue;
767
} else if (count < min_count) {
768
do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769
770
} else if (curlen != 0) {
771
if (curlen != prevlen) {
772
send_code(s, curlen, s->bl_tree); count--;
773
}
774
Assert(count >= 3 && count <= 6, " 3_6?");
775
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
776
777
} else if (count <= 10) {
778
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
779
780
} else {
781
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
782
}
783
count = 0; prevlen = curlen;
784
if (nextlen == 0) {
785
max_count = 138, min_count = 3;
786
} else if (curlen == nextlen) {
787
max_count = 6, min_count = 3;
788
} else {
789
max_count = 7, min_count = 4;
790
}
791
}
792
}
793
794
/* ===========================================================================
795
* Construct the Huffman tree for the bit lengths and return the index in
796
* bl_order of the last bit length code to send.
797
*/
798
local int build_bl_tree(deflate_state *s) {
799
int max_blindex; /* index of last bit length code of non zero freq */
800
801
/* Determine the bit length frequencies for literal and distance trees */
802
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
803
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
804
805
/* Build the bit length tree: */
806
build_tree(s, (tree_desc *)(&(s->bl_desc)));
807
/* opt_len now includes the length of the tree representations, except the
808
* lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
809
*/
810
811
/* Determine the number of bit length codes to send. The pkzip format
812
* requires that at least 4 bit length codes be sent. (appnote.txt says
813
* 3 but the actual value used is 4.)
814
*/
815
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
816
if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
817
}
818
/* Update opt_len to include the bit length tree and counts */
819
s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
820
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
821
s->opt_len, s->static_len));
822
823
return max_blindex;
824
}
825
826
/* ===========================================================================
827
* Send the header for a block using dynamic Huffman trees: the counts, the
828
* lengths of the bit length codes, the literal tree and the distance tree.
829
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
830
*/
831
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
832
int blcodes) {
833
int rank; /* index in bl_order */
834
835
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
836
Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
837
"too many codes");
838
Tracev((stderr, "\nbl counts: "));
839
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
840
send_bits(s, dcodes - 1, 5);
841
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
842
for (rank = 0; rank < blcodes; rank++) {
843
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
844
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
845
}
846
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
847
848
send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
849
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
850
851
send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
852
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
853
}
854
855
/* ===========================================================================
856
* Send a stored block
857
*/
858
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
859
ulg stored_len, int last) {
860
send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
861
bi_windup(s); /* align on byte boundary */
862
put_short(s, (ush)stored_len);
863
put_short(s, (ush)~stored_len);
864
if (stored_len)
865
zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
866
s->pending += stored_len;
867
#ifdef ZLIB_DEBUG
868
s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869
s->compressed_len += (stored_len + 4) << 3;
870
s->bits_sent += 2*16;
871
s->bits_sent += stored_len << 3;
872
#endif
873
}
874
875
/* ===========================================================================
876
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
877
*/
878
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
879
bi_flush(s);
880
}
881
882
/* ===========================================================================
883
* Send one empty static block to give enough lookahead for inflate.
884
* This takes 10 bits, of which 7 may remain in the bit buffer.
885
*/
886
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
887
send_bits(s, STATIC_TREES<<1, 3);
888
send_code(s, END_BLOCK, static_ltree);
889
#ifdef ZLIB_DEBUG
890
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891
#endif
892
bi_flush(s);
893
}
894
895
/* ===========================================================================
896
* Send the block data compressed using the given Huffman trees
897
*/
898
local void compress_block(deflate_state *s, const ct_data *ltree,
899
const ct_data *dtree) {
900
unsigned dist; /* distance of matched string */
901
int lc; /* match length or unmatched char (if dist == 0) */
902
unsigned sx = 0; /* running index in symbol buffers */
903
unsigned code; /* the code to send */
904
int extra; /* number of extra bits to send */
905
906
if (s->sym_next != 0) do {
907
#ifdef LIT_MEM
908
dist = s->d_buf[sx];
909
lc = s->l_buf[sx++];
910
#else
911
dist = s->sym_buf[sx++] & 0xff;
912
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913
lc = s->sym_buf[sx++];
914
#endif
915
if (dist == 0) {
916
send_code(s, lc, ltree); /* send a literal byte */
917
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918
} else {
919
/* Here, lc is the match length - MIN_MATCH */
920
code = _length_code[lc];
921
send_code(s, code + LITERALS + 1, ltree); /* send length code */
922
extra = extra_lbits[code];
923
if (extra != 0) {
924
lc -= base_length[code];
925
send_bits(s, lc, extra); /* send the extra length bits */
926
}
927
dist--; /* dist is now the match distance - 1 */
928
code = d_code(dist);
929
Assert (code < D_CODES, "bad d_code");
930
931
send_code(s, code, dtree); /* send the distance code */
932
extra = extra_dbits[code];
933
if (extra != 0) {
934
dist -= (unsigned)base_dist[code];
935
send_bits(s, dist, extra); /* send the extra distance bits */
936
}
937
} /* literal or match pair ? */
938
939
/* Check for no overlay of pending_buf on needed symbols */
940
#ifdef LIT_MEM
941
Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942
#else
943
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944
#endif
945
946
} while (sx < s->sym_next);
947
948
send_code(s, END_BLOCK, ltree);
949
}
950
951
/* ===========================================================================
952
* Check if the data type is TEXT or BINARY, using the following algorithm:
953
* - TEXT if the two conditions below are satisfied:
954
* a) There are no non-portable control characters belonging to the
955
* "block list" (0..6, 14..25, 28..31).
956
* b) There is at least one printable character belonging to the
957
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958
* - BINARY otherwise.
959
* - The following partially-portable control characters form a
960
* "gray list" that is ignored in this detection algorithm:
961
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962
* IN assertion: the fields Freq of dyn_ltree are set.
963
*/
964
local int detect_data_type(deflate_state *s) {
965
/* block_mask is the bit mask of block-listed bytes
966
* set bits 0..6, 14..25, and 28..31
967
* 0xf3ffc07f = binary 11110011111111111100000001111111
968
*/
969
unsigned long block_mask = 0xf3ffc07fUL;
970
int n;
971
972
/* Check for non-textual ("block-listed") bytes. */
973
for (n = 0; n <= 31; n++, block_mask >>= 1)
974
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975
return Z_BINARY;
976
977
/* Check for textual ("allow-listed") bytes. */
978
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979
|| s->dyn_ltree[13].Freq != 0)
980
return Z_TEXT;
981
for (n = 32; n < LITERALS; n++)
982
if (s->dyn_ltree[n].Freq != 0)
983
return Z_TEXT;
984
985
/* There are no "block-listed" or "allow-listed" bytes:
986
* this stream either is empty or has tolerated ("gray-listed") bytes only.
987
*/
988
return Z_BINARY;
989
}
990
991
/* ===========================================================================
992
* Determine the best encoding for the current block: dynamic trees, static
993
* trees or store, and write out the encoded block.
994
*/
995
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
996
ulg stored_len, int last) {
997
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
998
int max_blindex = 0; /* index of last bit length code of non zero freq */
999
1000
/* Build the Huffman trees unless a stored block is forced */
1001
if (s->level > 0) {
1002
1003
/* Check if the file is binary or text */
1004
if (s->strm->data_type == Z_UNKNOWN)
1005
s->strm->data_type = detect_data_type(s);
1006
1007
/* Construct the literal and distance trees */
1008
build_tree(s, (tree_desc *)(&(s->l_desc)));
1009
Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1010
s->static_len));
1011
1012
build_tree(s, (tree_desc *)(&(s->d_desc)));
1013
Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1014
s->static_len));
1015
/* At this point, opt_len and static_len are the total bit lengths of
1016
* the compressed block data, excluding the tree representations.
1017
*/
1018
1019
/* Build the bit length tree for the above two trees, and get the index
1020
* in bl_order of the last bit length code to send.
1021
*/
1022
max_blindex = build_bl_tree(s);
1023
1024
/* Determine the best encoding. Compute the block lengths in bytes. */
1025
opt_lenb = (s->opt_len + 3 + 7) >> 3;
1026
static_lenb = (s->static_len + 3 + 7) >> 3;
1027
1028
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1029
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1030
s->sym_next / 3));
1031
1032
#ifndef FORCE_STATIC
1033
if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034
#endif
1035
opt_lenb = static_lenb;
1036
1037
} else {
1038
Assert(buf != (char*)0, "lost buf");
1039
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1040
}
1041
1042
#ifdef FORCE_STORED
1043
if (buf != (char*)0) { /* force stored block */
1044
#else
1045
if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1046
/* 4: two words for the lengths */
1047
#endif
1048
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1049
* Otherwise we can't have processed more than WSIZE input bytes since
1050
* the last block flush, because compression would have been
1051
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1052
* transform a block into a stored block.
1053
*/
1054
_tr_stored_block(s, buf, stored_len, last);
1055
1056
} else if (static_lenb == opt_lenb) {
1057
send_bits(s, (STATIC_TREES<<1) + last, 3);
1058
compress_block(s, (const ct_data *)static_ltree,
1059
(const ct_data *)static_dtree);
1060
#ifdef ZLIB_DEBUG
1061
s->compressed_len += 3 + s->static_len;
1062
#endif
1063
} else {
1064
send_bits(s, (DYN_TREES<<1) + last, 3);
1065
send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1066
max_blindex + 1);
1067
compress_block(s, (const ct_data *)s->dyn_ltree,
1068
(const ct_data *)s->dyn_dtree);
1069
#ifdef ZLIB_DEBUG
1070
s->compressed_len += 3 + s->opt_len;
1071
#endif
1072
}
1073
Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1074
/* The above check is made mod 2^32, for files larger than 512 MB
1075
* and uLong implemented on 32 bits.
1076
*/
1077
init_block(s);
1078
1079
if (last) {
1080
bi_windup(s);
1081
#ifdef ZLIB_DEBUG
1082
s->compressed_len += 7; /* align on byte boundary */
1083
#endif
1084
}
1085
Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1086
s->compressed_len - 7*last));
1087
}
1088
1089
/* ===========================================================================
1090
* Save the match info and tally the frequency counts. Return true if
1091
* the current block must be flushed.
1092
*/
1093
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1094
#ifdef LIT_MEM
1095
s->d_buf[s->sym_next] = (ush)dist;
1096
s->l_buf[s->sym_next++] = (uch)lc;
1097
#else
1098
s->sym_buf[s->sym_next++] = (uch)dist;
1099
s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100
s->sym_buf[s->sym_next++] = (uch)lc;
1101
#endif
1102
if (dist == 0) {
1103
/* lc is the unmatched char */
1104
s->dyn_ltree[lc].Freq++;
1105
} else {
1106
s->matches++;
1107
/* Here, lc is the match length - MIN_MATCH */
1108
dist--; /* dist = match distance - 1 */
1109
Assert((ush)dist < (ush)MAX_DIST(s) &&
1110
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1111
(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1112
1113
s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1114
s->dyn_dtree[d_code(dist)].Freq++;
1115
}
1116
return (s->sym_next == s->sym_end);
1117
}
1118
1119