Path: blob/master/Convolutional Neural Networks/week2/KerasTutorial/kt_utils.py
16825 views
import keras.backend as K1import math2import numpy as np3import h5py4import matplotlib.pyplot as plt567def mean_pred(y_true, y_pred):8return K.mean(y_pred)910def load_dataset():11train_dataset = h5py.File('datasets/train_happy.h5', "r")12train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features13train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels1415test_dataset = h5py.File('datasets/test_happy.h5', "r")16test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features17test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels1819classes = np.array(test_dataset["list_classes"][:]) # the list of classes2021train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))22test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))2324return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes25262728