"""
CS224N 2022-23: Homework 4
run.py: Run Script for Simple NMT Model
Pencheng Yin <[email protected]>
Sahil Chopra <[email protected]>
Vera Lin <[email protected]>
Siyan Li <[email protected]>
Usage:
run.py train --train-src=<file> --train-tgt=<file> --dev-src=<file> --dev-tgt=<file> --vocab=<file> [options]
run.py decode [options] MODEL_PATH TEST_SOURCE_FILE OUTPUT_FILE
run.py decode [options] MODEL_PATH TEST_SOURCE_FILE TEST_TARGET_FILE OUTPUT_FILE
Options:
-h --help show this screen.
--cuda use GPU
--train-src=<file> train source file
--train-tgt=<file> train target file
--dev-src=<file> dev source file
--dev-tgt=<file> dev target file
--vocab=<file> vocab file
--seed=<int> seed [default: 0]
--batch-size=<int> batch size [default: 32]
--embed-size=<int> embedding size [default: 256]
--hidden-size=<int> hidden size [default: 256]
--clip-grad=<float> gradient clipping [default: 5.0]
--log-every=<int> log every [default: 10]
--max-epoch=<int> max epoch [default: 30]
--input-feed use input feeding
--patience=<int> wait for how many iterations to decay learning rate [default: 5]
--max-num-trial=<int> terminate training after how many trials [default: 5]
--lr-decay=<float> learning rate decay [default: 0.5]
--beam-size=<int> beam size [default: 5]
--sample-size=<int> sample size [default: 5]
--lr=<float> learning rate [default: 0.001]
--uniform-init=<float> uniformly initialize all parameters [default: 0.1]
--save-to=<file> model save path [default: model.bin]
--valid-niter=<int> perform validation after how many iterations [default: 2000]
--dropout=<float> dropout [default: 0.3]
--max-decoding-time-step=<int> maximum number of decoding time steps [default: 70]
"""
import math
import sys
import pickle
import time
from docopt import docopt
import sacrebleu
from nmt_model import Hypothesis, NMT
import numpy as np
from typing import List, Tuple, Dict, Set, Union
from tqdm import tqdm
from utils import read_corpus, batch_iter
from vocab import Vocab, VocabEntry
import torch
import torch.nn.utils
from torch.utils.tensorboard import SummaryWriter
def evaluate_ppl(model, dev_data, batch_size=32):
""" Evaluate perplexity on dev sentences
@param model (NMT): NMT Model
@param dev_data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence
@param batch_size (batch size)
@returns ppl (perplixty on dev sentences)
"""
was_training = model.training
model.eval()
cum_loss = 0.
cum_tgt_words = 0.
with torch.no_grad():
for src_sents, tgt_sents in batch_iter(dev_data, batch_size):
loss = -model(src_sents, tgt_sents).sum()
cum_loss += loss.item()
tgt_word_num_to_predict = sum(len(s[1:]) for s in tgt_sents)
cum_tgt_words += tgt_word_num_to_predict
ppl = np.exp(cum_loss / cum_tgt_words)
if was_training:
model.train()
return ppl
def compute_corpus_level_bleu_score(references: List[List[str]], hypotheses: List[Hypothesis]) -> float:
""" Given decoding results and reference sentences, compute corpus-level BLEU score.
@param references (List[List[str]]): a list of gold-standard reference target sentences
@param hypotheses (List[Hypothesis]): a list of hypotheses, one for each reference
@returns bleu_score: corpus-level BLEU score
"""
if references[0][0] == '<s>':
references = [ref[1:-1] for ref in references]
detokened_refs = [''.join(pieces).replace('▁', ' ') for pieces in references]
detokened_hyps = [''.join(hyp.value).replace('▁', ' ') for hyp in hypotheses]
bleu = sacrebleu.corpus_bleu(detokened_hyps, [detokened_refs])
return bleu.score
def train(args: Dict):
""" Train the NMT Model.
@param args (Dict): args from cmd line
"""
train_data_src = read_corpus(args['--train-src'], source='src', vocab_size=21000)
train_data_tgt = read_corpus(args['--train-tgt'], source='tgt', vocab_size=8000)
dev_data_src = read_corpus(args['--dev-src'], source='src', vocab_size=3000)
dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt', vocab_size=2000)
train_data = list(zip(train_data_src, train_data_tgt))
dev_data = list(zip(dev_data_src, dev_data_tgt))
train_batch_size = int(args['--batch-size'])
clip_grad = float(args['--clip-grad'])
valid_niter = int(args['--valid-niter'])
log_every = int(args['--log-every'])
model_save_path = args['--save-to']
vocab = Vocab.load(args['--vocab'])
model = NMT(embed_size=1024,
hidden_size=768,
dropout_rate=float(args['--dropout']),
vocab=vocab)
tensorboard_path = "nmt" if args['--cuda'] else "nmt_local"
writer = SummaryWriter(log_dir=f"./runs/{tensorboard_path}")
model.train()
uniform_init = float(args['--uniform-init'])
if np.abs(uniform_init) > 0.:
print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr)
for p in model.parameters():
p.data.uniform_(-uniform_init, uniform_init)
vocab_mask = torch.ones(len(vocab.tgt))
vocab_mask[vocab.tgt['<pad>']] = 0
device = torch.device("cuda:0" if args['--cuda'] else "cpu")
print('use device: %s' % device, file=sys.stderr)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr']))
num_trial = 0
train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0
cum_examples = report_examples = epoch = valid_num = 0
hist_valid_scores = []
train_time = begin_time = time.time()
print('begin Maximum Likelihood training')
while True:
epoch += 1
for src_sents, tgt_sents in batch_iter(train_data, batch_size=train_batch_size, shuffle=True):
train_iter += 1
optimizer.zero_grad()
batch_size = len(src_sents)
example_losses = -model(src_sents, tgt_sents)
batch_loss = example_losses.sum()
loss = batch_loss / batch_size
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad)
optimizer.step()
batch_losses_val = batch_loss.item()
report_loss += batch_losses_val
cum_loss += batch_losses_val
tgt_words_num_to_predict = sum(len(s[1:]) for s in tgt_sents)
report_tgt_words += tgt_words_num_to_predict
cum_tgt_words += tgt_words_num_to_predict
report_examples += batch_size
cum_examples += batch_size
if train_iter % log_every == 0:
writer.add_scalar("loss/train", report_loss / report_examples, train_iter)
writer.add_scalar("perplexity/train", math.exp(report_loss / report_tgt_words), train_iter)
print('epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' \
'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % (epoch, train_iter,
report_loss / report_examples,
math.exp(report_loss / report_tgt_words),
cum_examples,
report_tgt_words / (time.time() - train_time),
time.time() - begin_time), file=sys.stderr)
train_time = time.time()
report_loss = report_tgt_words = report_examples = 0.
if train_iter % valid_niter == 0:
writer.add_scalar("loss/val", cum_loss / cum_examples, train_iter)
print('epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter,
cum_loss / cum_examples,
np.exp(cum_loss / cum_tgt_words),
cum_examples), file=sys.stderr)
cum_loss = cum_examples = cum_tgt_words = 0.
valid_num += 1
print('begin validation ...', file=sys.stderr)
dev_ppl = evaluate_ppl(model, dev_data, batch_size=128)
valid_metric = -dev_ppl
writer.add_scalar("perplexity/val", dev_ppl, train_iter)
print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr)
is_better = len(hist_valid_scores) == 0 or valid_metric > max(hist_valid_scores)
hist_valid_scores.append(valid_metric)
if is_better:
patience = 0
print('save currently the best model to [%s]' % model_save_path, file=sys.stderr)
model.save(model_save_path)
torch.save(optimizer.state_dict(), model_save_path + '.optim')
elif patience < int(args['--patience']):
patience += 1
print('hit patience %d' % patience, file=sys.stderr)
if patience == int(args['--patience']):
num_trial += 1
print('hit #%d trial' % num_trial, file=sys.stderr)
if num_trial == int(args['--max-num-trial']):
print('early stop!', file=sys.stderr)
exit(0)
lr = optimizer.param_groups[0]['lr'] * float(args['--lr-decay'])
print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)
params = torch.load(model_save_path, map_location=lambda storage, loc: storage)
model.load_state_dict(params['state_dict'])
model = model.to(device)
print('restore parameters of the optimizers', file=sys.stderr)
optimizer.load_state_dict(torch.load(model_save_path + '.optim'))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
patience = 0
if epoch == int(args['--max-epoch']):
print('reached maximum number of epochs!', file=sys.stderr)
exit(0)
def decode(args: Dict[str, str]):
""" Performs decoding on a test set, and save the best-scoring decoding results.
If the target gold-standard sentences are given, the function also computes
corpus-level BLEU score.
@param args (Dict): args from cmd line
"""
print("load test source sentences from [{}]".format(args['TEST_SOURCE_FILE']), file=sys.stderr)
test_data_src = read_corpus(args['TEST_SOURCE_FILE'], source='src', vocab_size=3000)
if args['TEST_TARGET_FILE']:
print("load test target sentences from [{}]".format(args['TEST_TARGET_FILE']), file=sys.stderr)
test_data_tgt = read_corpus(args['TEST_TARGET_FILE'], source='tgt', vocab_size=2000)
print("load model from {}".format(args['MODEL_PATH']), file=sys.stderr)
model = NMT.load(args['MODEL_PATH'])
if args['--cuda']:
model = model.to(torch.device("cuda:0"))
hypotheses = beam_search(model, test_data_src,
beam_size=10,
max_decoding_time_step=int(args['--max-decoding-time-step']))
if args['TEST_TARGET_FILE']:
top_hypotheses = [hyps[0] for hyps in hypotheses]
bleu_score = compute_corpus_level_bleu_score(test_data_tgt, top_hypotheses)
print('Corpus BLEU: {}'.format(bleu_score), file=sys.stderr)
with open(args['OUTPUT_FILE'], 'w') as f:
for src_sent, hyps in zip(test_data_src, hypotheses):
top_hyp = hyps[0]
hyp_sent = ''.join(top_hyp.value).replace('▁', ' ')
f.write(hyp_sent + '\n')
def beam_search(model: NMT, test_data_src: List[List[str]], beam_size: int, max_decoding_time_step: int) -> List[List[Hypothesis]]:
""" Run beam search to construct hypotheses for a list of src-language sentences.
@param model (NMT): NMT Model
@param test_data_src (List[List[str]]): List of sentences (words) in source language, from test set.
@param beam_size (int): beam_size (# of hypotheses to hold for a translation at every step)
@param max_decoding_time_step (int): maximum sentence length that Beam search can produce
@returns hypotheses (List[List[Hypothesis]]): List of Hypothesis translations for every source sentence.
"""
was_training = model.training
model.eval()
hypotheses = []
with torch.no_grad():
for src_sent in tqdm(test_data_src, desc='Decoding', file=sys.stdout):
example_hyps = model.beam_search(src_sent, beam_size=beam_size, max_decoding_time_step=max_decoding_time_step)
hypotheses.append(example_hyps)
if was_training: model.train(was_training)
return hypotheses
def main():
""" Main func.
"""
args = docopt(__doc__)
assert(torch.__version__ >= "1.0.0"), "Please update your installation of PyTorch. You have {} and you should have version 1.0.0".format(torch.__version__)
seed = int(args['--seed'])
torch.manual_seed(seed)
if args['--cuda']:
torch.cuda.manual_seed(seed)
np.random.seed(seed * 13 // 7)
if args['train']:
train(args)
elif args['decode']:
decode(args)
else:
raise RuntimeError('invalid run mode')
if __name__ == '__main__':
main()