from typing import Callable, Iterable, Tuple
import math
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
state = self.state[p]
alpha = group["lr"]
device = "cuda" if torch.cuda.is_available() else "cpu"
if "t" not in state.keys():
state["t"] = 0
state["mt"] = torch.zeros(p.data.shape).to(device)
state["vt"] = torch.zeros(p.data.shape).to(device)
t = state["t"]
beta1 = group["betas"][0]
beta2 = group["betas"][1]
lr = group["lr"]
state["t"] = t + 1
state["mt"] = beta1*state["mt"] + (1-beta1)*grad
state["vt"] = beta2*state["vt"] + (1-beta2)*(torch.mul(grad,grad))
state["alphat"] = (lr * math.sqrt(1-beta2**state["t"]))/(1-beta1**state["t"])
p.data = p.data - (state["alphat"]*state["mt"]/(torch.sqrt(state["vt"]) + group["eps"]))
p.data = p.data - lr * group["weight_decay"] * p.data
return loss