Path: blob/main/minBERT/sanity_check.py
984 views
import torch1from bert import BertModel2sanity_data = torch.load("./sanity_check.data")3# text_batch = ["hello world", "hello neural network for NLP"]4# tokenizer here5sent_ids = torch.tensor([[101, 7592, 2088, 102, 0, 0, 0, 0],6[101, 7592, 15756, 2897, 2005, 17953, 2361, 102]])7att_mask = torch.tensor([[1, 1, 1, 1, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1]])89# load our model10bert = BertModel.from_pretrained('bert-base-uncased')11outputs = bert(sent_ids, att_mask)12att_mask = att_mask.unsqueeze(-1)13outputs['last_hidden_state'] = outputs['last_hidden_state'] * att_mask14sanity_data['last_hidden_state'] = sanity_data['last_hidden_state'] * att_mask1516for k in ['last_hidden_state', 'pooler_output']:17assert torch.allclose(outputs[k], sanity_data[k], atol=1e-5, rtol=1e-3)18print("Your BERT implementation is correct!")19202122