.. _callbacks: Plot Modifications: Overplotting Contours, Velocities, Particles, and More ========================================================================== Adding callbacks to plots ------------------------- After a plot is generated using the standard tools (e.g. SlicePlot, ProjectionPlot, etc.), it can be annotated with any number of ``callbacks`` before being saved to disk. These callbacks can modify the plots by adding lines, text, markers, streamlines, velocity vectors, contours, and more. Callbacks can be applied to plots created with :class:`~yt.visualization.plot_window.SlicePlot`, :class:`~yt.visualization.plot_window.ProjectionPlot`, :class:`~yt.visualization.plot_window.AxisAlignedSlicePlot`, :class:`~yt.visualization.plot_window.AxisAlignedProjectionPlot`, :class:`~yt.visualization.plot_window.OffAxisSlicePlot`, or :class:`~yt.visualization.plot_window.OffAxisProjectionPlot`, by calling one of the ``annotate_`` methods that hang off of the plot object. The ``annotate_`` methods are dynamically generated based on the list of available callbacks. For example: .. code-block:: python slc = SlicePlot(ds, "x", ("gas", "density")) slc.annotate_title("This is a Density plot") would add the :func:`~yt.visualization.plot_modifications.TitleCallback` to the plot object. All of the callbacks listed below are available via similar ``annotate_`` functions. To clear one or more annotations from an existing plot, see the :ref:`clear_annotations function <clear-annotations>`. For a brief demonstration of a few of these callbacks in action together, see the cookbook recipe: :ref:`annotations-recipe`. Also note that new ``annotate_`` methods can be defined without modifying yt's source code, see :ref:`extend-annotations`. Coordinate Systems in Callbacks ------------------------------- Many of the callbacks (e.g. :class:`~yt.visualization.plot_modifications.TextLabelCallback`) are specified to occur at user-defined coordinate locations (like where to place a marker or text on the plot). There are several different coordinate systems used to identify these locations. These coordinate systems can be specified with the ``coord_system`` keyword in the relevant callback, which is by default set to ``data``. The valid coordinate systems are: ``data`` – the 3D dataset coordinates ``plot`` – the 2D coordinates defined by the actual plot limits ``axis`` – the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right ``figure`` – the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right Here we will demonstrate these different coordinate systems for an projection of the x-plane (i.e. with axes in the y and z directions): .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") s = yt.SlicePlot(ds, "x", ("gas", "density")) s.set_axes_unit("kpc") # Plot marker and text in data coords s.annotate_marker((0.2, 0.5, 0.9), coord_system="data") s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data") # Plot marker and text in plot coords s.annotate_marker((200, -300), coord_system="plot") s.annotate_text((200, -300), "plot: (200, -300)", coord_system="plot") # Plot marker and text in axis coords s.annotate_marker((0.1, 0.2), coord_system="axis") s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis") # Plot marker and text in figure coords # N.B. marker will not render outside of axis bounds s.annotate_marker((0.1, 0.2), coord_system="figure", color="black") s.annotate_text( (0.1, 0.2), "figure: (0.1, 0.2)", coord_system="figure", text_args={"color": "black"}, ) s.save() Note that for non-cartesian geometries and ``coord_system="data"``, the coordinates are still interpreted in the corresponding cartesian system. For instance using a polar dataset from AMRVAC : .. python-script:: import yt ds = yt.load("amrvac/bw_polar_2D0000.dat") s = yt.plot_2d(ds, ("gas", "density")) s.set_background_color("density", "black") # Plot marker and text in data coords s.annotate_marker((0.2, 0.5, 0.9), coord_system="data") s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data") # Plot marker and text in plot coords s.annotate_marker((0.4, -0.5), coord_system="plot") s.annotate_text((0.4, -0.5), "plot: (0.4, -0.5)", coord_system="plot") # Plot marker and text in axis coords s.annotate_marker((0.1, 0.2), coord_system="axis") s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis") # Plot marker and text in figure coords # N.B. marker will not render outside of axis bounds s.annotate_marker((0.6, 0.2), coord_system="figure") s.annotate_text((0.6, 0.2), "figure: (0.6, 0.2)", coord_system="figure") s.save() Available Callbacks ------------------- The underlying functions are more thoroughly documented in :ref:`callback-api`. .. _clear-annotations: Clear Callbacks (Some or All) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: clear_annotations(index=None) This function will clear previous annotations (callbacks) in the plot. If no index is provided, it will clear all annotations to the plot. If an index is provided, it will clear only the Nth annotation to the plot. Note that the index goes from 0..N, and you can specify the index of the last added annotation as -1. (This is a proxy for :func:`~yt.visualization.plot_window.clear_annotations`.) .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_scale() p.annotate_timestamp() # Oops, I didn't want any of that. p.clear_annotations() p.save() .. _annotate-list: List Currently Applied Callbacks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: list_annotations() This function will print a list of each of the currently applied callbacks together with their index. The index can be used with :ref:`clear_annotations() function <clear-annotations>` to remove a specific callback. (This is a proxy for :func:`~yt.visualization.plot_window.list_annotations`.) .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_scale() p.annotate_timestamp() p.list_annotations() .. _annotate-arrow: Overplot Arrow ~~~~~~~~~~~~~~ .. function:: annotate_arrow(self, pos, length=0.03, coord_system='data', **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.ArrowCallback`.) Overplot an arrow pointing at a position for highlighting a specific feature. Arrow points from lower left to the designated position with arrow length "length". .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="c") slc.annotate_arrow((0.5, 0.5, 0.5), length=0.06, color="blue") slc.save() .. _annotate-clumps: Clump Finder Callback ~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_clumps(self, clumps, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.ClumpContourCallback`.) Take a list of ``clumps`` and plot them as a set of contours. .. python-script:: import numpy as np import yt from yt.data_objects.level_sets.api import Clump, find_clumps ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") data_source = ds.disk([0.5, 0.5, 0.5], [0.0, 0.0, 1.0], (8.0, "kpc"), (1.0, "kpc")) c_min = 10 ** np.floor(np.log10(data_source["gas", "density"]).min()) c_max = 10 ** np.floor(np.log10(data_source["gas", "density"]).max() + 1) master_clump = Clump(data_source, ("gas", "density")) master_clump.add_validator("min_cells", 20) find_clumps(master_clump, c_min, c_max, 2.0) leaf_clumps = master_clump.leaves prj = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) prj.annotate_clumps(leaf_clumps) prj.save("clumps") .. _annotate-contours: Overplot Contours ~~~~~~~~~~~~~~~~~ .. function:: annotate_contour(self, field, levels=5, factor=4, take_log=False,\ clim=None, plot_args=None, label=False, \ text_args=None, data_source=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.ContourCallback`.) Add contours in ``field`` to the plot. ``levels`` governs the number of contours generated, ``factor`` governs the number of points used in the interpolation, ``take_log`` governs how it is contoured and ``clim`` gives the (lower, upper) limits for contouring. .. python-script:: import yt ds = yt.load("Enzo_64/DD0043/data0043") s = yt.SlicePlot(ds, "x", ("gas", "density"), center="max") s.annotate_contour(("gas", "temperature")) s.save() .. _annotate-quivers: Overplot Quivers ~~~~~~~~~~~~~~~~ Axis-Aligned Data Sources ^^^^^^^^^^^^^^^^^^^^^^^^^ .. function:: annotate_quiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \ scale_units=None, normalize=False, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.QuiverCallback`.) Adds a 'quiver' plot to any plot, using the ``field_x`` and ``field_y`` from the associated data, skipping every ``factor`` pixels in the discretization. A third field, ``field_c``, can be used as color; which is the counterpart of ``matplotlib.axes.Axes.quiver``'s final positional argument ``C``. ``scale`` is the data units per arrow length unit using ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. All additional keyword arguments are passed down to ``matplotlib.Axes.axes.quiver``. Example using a constant color .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.ProjectionPlot( ds, "z", ("gas", "density"), center=[0.5, 0.5, 0.5], weight_field="density", width=(20, "kpc"), ) p.annotate_quiver( ("gas", "velocity_x"), ("gas", "velocity_y"), factor=16, color="purple", ) p.save() And now using a continuous colormap .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.ProjectionPlot( ds, "z", ("gas", "density"), center=[0.5, 0.5, 0.5], weight_field="density", width=(20, "kpc"), ) p.annotate_quiver( ("gas", "velocity_x"), ("gas", "velocity_y"), ("gas", "vorticity_z"), factor=16, cmap="inferno_r", ) p.save() Off-Axis Data Sources ^^^^^^^^^^^^^^^^^^^^^ .. function:: annotate_cquiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \ scale_units=None, normalize=False, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.CuttingQuiverCallback`.) Get a quiver plot on top of a cutting plane, using the ``field_x`` and ``field_y`` from the associated data, skipping every ``factor`` datapoints in the discretization. ``scale`` is the data units per arrow length unit using ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. Additional arguments can be passed to the ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info. .. python-script:: import yt ds = yt.load("Enzo_64/DD0043/data0043") s = yt.OffAxisSlicePlot(ds, [1, 1, 0], [("gas", "density")], center="c") s.annotate_cquiver( ("gas", "cutting_plane_velocity_x"), ("gas", "cutting_plane_velocity_y"), factor=10, color="orange", ) s.zoom(1.5) s.save() .. _annotate-grids: Overplot Grids ~~~~~~~~~~~~~~ .. function:: annotate_grids(self, alpha=0.7, min_pix=1, min_pix_ids=20, \ draw_ids=False, id_loc="lower left", \ periodic=True, min_level=None, \ max_level=None, cmap='B-W Linear_r', \ edgecolors=None, linewidth=1.0) (This is a proxy for :class:`~yt.visualization.plot_modifications.GridBoundaryCallback`.) Adds grid boundaries to a plot, optionally with alpha-blending via the ``alpha`` keyword. Cuttoff for display is at ``min_pix`` wide. ``draw_ids`` puts the grid id in the ``id_loc`` corner of the grid. (``id_loc`` can be upper/lower left/right. ``draw_ids`` is not so great in projections...) .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max") slc.annotate_grids() slc.save() .. _annotate-cell-edges: Overplot Cell Edges ~~~~~~~~~~~~~~~~~~~ .. function:: annotate_cell_edges(line_width=0.002, alpha=1.0, color='black') (This is a proxy for :class:`~yt.visualization.plot_modifications.CellEdgesCallback`.) Annotate the edges of cells, where the ``line_width`` relative to size of the longest plot axis is specified. The ``alpha`` of the overlaid image and the ``color`` of the lines are also specifiable. Note that because the lines are drawn from both sides of a cell, the image sometimes has the effect of doubling the line width. Color here is a matplotlib color name or a 3-tuple of RGB float values. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max") slc.annotate_cell_edges() slc.save() .. _annotate-image-line: Overplot a Straight Line ~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_line(self, p1, p2, *, coord_system='data', **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.LinePlotCallback`.) Overplot a line with endpoints at p1 and p2. p1 and p2 should be 2D or 3D coordinates consistent with the coordinate system denoted in the "coord_system" keyword. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc")) p.annotate_line((0.3, 0.4), (0.8, 0.9), coord_system="axis") p.save() .. _annotate-magnetic-field: Overplot Magnetic Field Quivers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_magnetic_field(self, factor=16, *, scale=None, \ scale_units=None, normalize=False, \ **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.MagFieldCallback`.) Adds a 'quiver' plot of magnetic field to the plot, skipping every ``factor`` datapoints in the discretization. ``scale`` is the data units per arrow length unit using ``scale_units``. If ``normalize`` is ``True``, the magnetic fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. Additional arguments can be passed to the ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info. .. python-script:: import yt ds = yt.load( "MHDSloshing/virgo_low_res.0054.vtk", units_override={ "time_unit": (1, "Myr"), "length_unit": (1, "Mpc"), "mass_unit": (1e17, "Msun"), }, ) p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(300, "kpc")) p.annotate_magnetic_field(headlength=3) p.save() .. _annotate-marker: Annotate a Point With a Marker ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_marker(self, pos, marker='x', *, coord_system='data', **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.MarkerAnnotateCallback`.) Overplot a marker on a position for highlighting specific features. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(10, "kpc")) s.annotate_marker((-2, -2), coord_system="plot", color="blue", s=500) s.save() .. _annotate-particles: Overplotting Particle Positions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_particles(self, width, p_size=1.0, col='k', marker='o',\ stride=1, ptype='all', alpha=1.0, data_source=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.ParticleCallback`.) Adds particle positions, based on a thick slab along ``axis`` with a ``width`` along the line of sight. ``p_size`` controls the number of pixels per particle, and ``col`` governs the color. ``ptype`` will restrict plotted particles to only those that are of a given type. ``data_source`` will only plot particles contained within the data_source object. WARNING: if ``data_source`` is a :class:`yt.data_objects.selection_data_containers.YTCutRegion` then the ``width`` parameter is ignored. .. python-script:: import yt ds = yt.load("Enzo_64/DD0043/data0043") p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc")) p.annotate_particles((10, "Mpc")) p.save() To plot only the central particles .. python-script:: import yt ds = yt.load("Enzo_64/DD0043/data0043") p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc")) sp = ds.sphere(p.data_source.center, ds.quan(1, "Mpc")) p.annotate_particles((10, "Mpc"), data_source=sp) p.save() .. _annotate-sphere: Overplot a Circle on a Plot ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_sphere(self, center, radius, circle_args=None, \ coord_system='data', text=None, text_args=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.SphereCallback`.) Overplot a circle with designated center and radius with optional text. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_sphere([0.5, 0.5, 0.5], radius=(2, "kpc"), circle_args={"color": "black"}) p.save() .. _annotate-streamlines: Overplot Streamlines ~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_streamlines(self, field_x, field_y, *, linewidth=1.0, linewidth_upscaling=1.0, \ color=None, color_threshold=float('-inf'), factor=16, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.StreamlineCallback`.) Add streamlines to any plot, using the ``field_x`` and ``field_y`` from the associated data, using ``nx`` and ``ny`` starting points that are bounded by ``xstart`` and ``ystart``. To begin streamlines from the left edge of the plot, set ``start_at_xedge`` to ``True``; for the bottom edge, use ``start_at_yedge``. A line with the qmean vector magnitude will cover 1.0/``factor`` of the image. Additional keyword arguments are passed down to `matplotlib.axes.Axes.streamplot <https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.streamplot.html>`_ .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) s.annotate_streamlines(("gas", "velocity_x"), ("gas", "velocity_y")) s.save() .. _annotate-line-integral-convolution: Overplot Line Integral Convolution ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_line_integral_convolution(self, field_x, field_y, \ texture=None, kernellen=50., \ lim=(0.5,0.6), cmap='binary', \ alpha=0.8, const_alpha=False) (This is a proxy for :class:`~yt.visualization.plot_modifications.LineIntegralConvolutionCallback`.) Add line integral convolution to any plot, using the ``field_x`` and ``field_y`` from the associated data. A white noise background will be used for ``texture`` as default. Adjust the bounds of ``lim`` in the range of ``[0, 1]`` which applies upper and lower bounds to the values of line integral convolution and enhance the visibility of plots. When ``const_alpha=False``, alpha will be weighted spatially by the values of line integral convolution; otherwise a constant value of the given alpha is used. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) s.annotate_line_integral_convolution(("gas", "velocity_x"), ("gas", "velocity_y"), lim=(0.5, 0.65)) s.save() .. _annotate-text: Overplot Text ~~~~~~~~~~~~~ .. function:: annotate_text(self, pos, text, coord_system='data', \ text_args=None, inset_box_args=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.TextLabelCallback`.) Overplot text on the plot at a specified position. If you desire an inset box around your text, set one with the inset_box_args dictionary keyword. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") s = yt.SlicePlot(ds, "z", ("gas", "density"), center="max", width=(10, "kpc")) s.annotate_text((2, 2), "Galaxy!", coord_system="plot") s.save() .. _annotate-title: Add a Title ~~~~~~~~~~~ .. function:: annotate_title(self, title='Plot') (This is a proxy for :class:`~yt.visualization.plot_modifications.TitleCallback`.) Accepts a ``title`` and adds it to the plot. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_title("Density Plot") p.save() .. _annotate-velocity: Overplot Quivers for the Velocity Field ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_velocity(self, factor=16, *, scale=None, scale_units=None, \ normalize=False, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.VelocityCallback`.) Adds a 'quiver' plot of velocity to the plot, skipping every ``factor`` datapoints in the discretization. ``scale`` is the data units per arrow length unit using ``scale_units``. If ``normalize`` is ``True``, the velocity fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. Additional arguments can be passed to the ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc")) p.annotate_velocity(headwidth=4) p.save() .. _annotate-timestamp: Add the Current Time and/or Redshift ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_timestamp(x_pos=None, y_pos=None, corner='lower_left',\ time=True, redshift=False, \ time_format='t = {time:.1f} {units}', \ time_unit=None, time_offset=None, \ redshift_format='z = {redshift:.2f}', \ draw_inset_box=False, coord_system='axis', \ text_args=None, inset_box_args=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.TimestampCallback`.) Annotates the timestamp and/or redshift of the data output at a specified location in the image (either in a present corner, or by specifying (x,y) image coordinates with the x_pos, y_pos arguments. If no time_units are specified, it will automatically choose appropriate units. It allows for custom formatting of the time and redshift information, the specification of an inset box around the text, and changing the value of the timestamp via a constant offset. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_timestamp() p.save() .. _annotate-scale: Add a Physical Scale Bar ~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_scale(corner='lower_right', coeff=None, \ unit=None, pos=None, \ scale_text_format="{scale} {units}", \ max_frac=0.16, min_frac=0.015, \ coord_system='axis', text_args=None, \ size_bar_args=None, draw_inset_box=False, \ inset_box_args=None) (This is a proxy for :class:`~yt.visualization.plot_modifications.ScaleCallback`.) Annotates the scale of the plot at a specified location in the image (either in a preset corner, or by specifying (x,y) image coordinates with the pos argument. Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the distance scale you desire to show on the plot. If no coeff and units are specified, an appropriate pair will be determined such that your scale bar is never smaller than min_frac or greater than max_frac of your plottable axis length. Additional customization of the scale bar is possible by adjusting the text_args and size_bar_args dictionaries. The text_args dictionary accepts matplotlib's font_properties arguments to override the default font_properties for the current plot. The size_bar_args dictionary accepts keyword arguments for the AnchoredSizeBar class in matplotlib's axes_grid toolkit. Finally, the format of the scale bar text can be adjusted using the scale_text_format keyword argument. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc")) p.annotate_scale() p.save() .. _annotate-triangle-facets: Annotate Triangle Facets Callback ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_triangle_facets(triangle_vertices, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.TriangleFacetsCallback`.) This add a line collection of a SlicePlot's plane-intersection with the triangles to the plot. This callback is ideal for a dataset representing a geometric model of triangular facets. .. python-script:: import os import h5py import yt # Load data file ds = yt.load("MoabTest/fng_usrbin22.h5m") # Create the desired slice plot s = yt.SlicePlot(ds, "z", ("moab", "TALLY_TAG")) # get triangle vertices from file (in this case hdf5) # setup file path for yt test directory filename = os.path.join( yt.config.ytcfg.get("yt", "test_data_dir"), "MoabTest/mcnp_n_impr_fluka.h5m" ) f = h5py.File(filename, mode="r") coords = f["/tstt/nodes/coordinates"][:] conn = f["/tstt/elements/Tri3/connectivity"][:] points = coords[conn - 1] # Annotate slice-triangle intersection contours to the plot s.annotate_triangle_facets(points, colors="black") s.save() .. _annotate-mesh-lines: Annotate Mesh Lines Callback ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_mesh_lines(**kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.MeshLinesCallback`.) This draws the mesh line boundaries over a plot using a Matplotlib line collection. This callback is only useful for unstructured or semi-structured mesh datasets. .. python-script:: import yt ds = yt.load("MOOSE_sample_data/out.e") sl = yt.SlicePlot(ds, "z", ("connect1", "nodal_aux")) sl.annotate_mesh_lines(color="black") sl.save() .. _annotate-ray: Overplot the Path of a Ray ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. function:: annotate_ray(ray, *, arrow=False, **kwargs) (This is a proxy for :class:`~yt.visualization.plot_modifications.RayCallback`.) Adds a line representing the projected path of a ray across the plot. The ray can be either a :class:`~yt.data_objects.selection_objects.ray.YTOrthoRay`, :class:`~yt.data_objects.selection_objects.ray.YTRay`, or a Trident :class:`~trident.light_ray.LightRay` object. annotate_ray() will properly account for periodic rays across the volume. .. python-script:: import yt ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") oray = ds.ortho_ray(0, (0.3, 0.4)) ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8)) p = yt.ProjectionPlot(ds, "z", ("gas", "density")) p.annotate_ray(oray) p.annotate_ray(ray) p.save() Applying filters on the final image ----------------------------------- It is also possible to operate on the plotted image directly by using one of the fixed resolution buffer filter as described in :ref:`frb-filters`. Note that it is necessary to call the plot object's ``refresh`` method to apply filters. .. python-script:: import yt ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') p = yt.SlicePlot(ds, 'z', 'density') p.frb.apply_gauss_beam(sigma=30) p.refresh() p.save() .. _extend-annotations: Extending annotations methods ----------------------------- New ``annotate_`` methods can be added to plot objects at runtime (i.e., without modifying yt's source code) by subclassing the base ``PlotCallback`` class. This is the recommended way to add custom and unique annotations to yt plots, as it can be done through local plugins, individual scripts, or even external packages. Here's a minimal example: .. python-script:: import yt from yt.visualization.api import PlotCallback class TextToPositionCallback(PlotCallback): # bind a new `annotate_text_to_position` plot method _type_name = "text_to_position" def __init__(self, text, x, y): # this method can have arbitrary arguments # and should store them without alteration, # but not run expensive computations self.text = text self.position = (x, y) def __call__(self, plot): # this method's signature is required # this is where we perform potentially expensive operations # the plot argument exposes matplotlib objects: # - plot._axes is a matplotlib.axes.Axes object # - plot._figure is a matplotlib.figure.Figure object plot._axes.annotate( self.text, xy=self.position, xycoords="data", xytext=(0.2, 0.6), textcoords="axes fraction", color="white", fontsize=30, arrowprops=dict(facecolor="black", shrink=0.05), ) ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") p = yt.SlicePlot(ds, "z", "density") p.annotate_text_to_position("Galactic center !", x=0, y=0) p.save()