Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
yt-project
GitHub Repository: yt-project/yt
Path: blob/main/doc/source/visualizing/callbacks.rst
928 views
.. _callbacks:

Plot Modifications: Overplotting Contours, Velocities, Particles, and More
==========================================================================

Adding callbacks to plots
-------------------------

After a plot is generated using the standard tools (e.g. SlicePlot,
ProjectionPlot, etc.), it can be annotated with any number of ``callbacks``
before being saved to disk.  These callbacks can modify the plots by adding
lines, text, markers, streamlines, velocity vectors, contours, and more.

Callbacks can be applied to plots created with
:class:`~yt.visualization.plot_window.SlicePlot`,
:class:`~yt.visualization.plot_window.ProjectionPlot`,
:class:`~yt.visualization.plot_window.AxisAlignedSlicePlot`,
:class:`~yt.visualization.plot_window.AxisAlignedProjectionPlot`,
:class:`~yt.visualization.plot_window.OffAxisSlicePlot`, or
:class:`~yt.visualization.plot_window.OffAxisProjectionPlot`, by calling
one of the ``annotate_`` methods that hang off of the plot object.
The ``annotate_`` methods are dynamically generated based on the list
of available callbacks.  For example:

.. code-block:: python

   slc = SlicePlot(ds, "x", ("gas", "density"))
   slc.annotate_title("This is a Density plot")

would add the :func:`~yt.visualization.plot_modifications.TitleCallback` to
the plot object.  All of the callbacks listed below are available via
similar ``annotate_`` functions.

To clear one or more annotations from an existing plot, see the
:ref:`clear_annotations function <clear-annotations>`.

For a brief demonstration of a few of these callbacks in action together,
see the cookbook recipe: :ref:`annotations-recipe`.

Also note that new ``annotate_`` methods can be defined without modifying yt's
source code, see :ref:`extend-annotations`.


Coordinate Systems in Callbacks
-------------------------------

Many of the callbacks (e.g.
:class:`~yt.visualization.plot_modifications.TextLabelCallback`) are specified
to occur at user-defined coordinate locations (like where to place a marker
or text on the plot).  There are several different coordinate systems used
to identify these locations.  These coordinate systems can be specified with
the ``coord_system`` keyword in the relevant callback, which is by default
set to ``data``.  The valid coordinate systems are:

    ``data`` – the 3D dataset coordinates

    ``plot`` – the 2D coordinates defined by the actual plot limits

    ``axis`` – the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    ``figure`` – the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

Here we will demonstrate these different coordinate systems for an projection
of the x-plane (i.e. with axes in the y and z directions):

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    s = yt.SlicePlot(ds, "x", ("gas", "density"))
    s.set_axes_unit("kpc")

    # Plot marker and text in data coords
    s.annotate_marker((0.2, 0.5, 0.9), coord_system="data")
    s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data")

    # Plot marker and text in plot coords
    s.annotate_marker((200, -300), coord_system="plot")
    s.annotate_text((200, -300), "plot: (200, -300)", coord_system="plot")

    # Plot marker and text in axis coords
    s.annotate_marker((0.1, 0.2), coord_system="axis")
    s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis")

    # Plot marker and text in figure coords
    # N.B. marker will not render outside of axis bounds
    s.annotate_marker((0.1, 0.2), coord_system="figure", color="black")
    s.annotate_text(
        (0.1, 0.2),
        "figure: (0.1, 0.2)",
        coord_system="figure",
        text_args={"color": "black"},
    )
    s.save()

Note that for non-cartesian geometries and ``coord_system="data"``, the coordinates
are still interpreted in the corresponding cartesian system. For instance using a polar
dataset from AMRVAC :

.. python-script::

    import yt

    ds = yt.load("amrvac/bw_polar_2D0000.dat")
    s = yt.plot_2d(ds, ("gas", "density"))
    s.set_background_color("density", "black")

    # Plot marker and text in data coords
    s.annotate_marker((0.2, 0.5, 0.9), coord_system="data")
    s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data")

    # Plot marker and text in plot coords
    s.annotate_marker((0.4, -0.5), coord_system="plot")
    s.annotate_text((0.4, -0.5), "plot: (0.4, -0.5)", coord_system="plot")

    # Plot marker and text in axis coords
    s.annotate_marker((0.1, 0.2), coord_system="axis")
    s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis")

    # Plot marker and text in figure coords
    # N.B. marker will not render outside of axis bounds
    s.annotate_marker((0.6, 0.2), coord_system="figure")
    s.annotate_text((0.6, 0.2), "figure: (0.6, 0.2)", coord_system="figure")
    s.save()

Available Callbacks
-------------------

The underlying functions are more thoroughly documented in :ref:`callback-api`.

.. _clear-annotations:

Clear Callbacks (Some or All)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: clear_annotations(index=None)

    This function will clear previous annotations (callbacks) in the plot.
    If no index is provided, it will clear all annotations to the plot.
    If an index is provided, it will clear only the Nth annotation
    to the plot.  Note that the index goes from 0..N, and you can
    specify the index of the last added annotation as -1.

    (This is a proxy for
    :func:`~yt.visualization.plot_window.clear_annotations`.)

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
    p.annotate_scale()
    p.annotate_timestamp()

    # Oops, I didn't want any of that.
    p.clear_annotations()
    p.save()

.. _annotate-list:

List Currently Applied Callbacks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: list_annotations()

   This function will print a list of each of the currently applied
   callbacks together with their index.  The index can be used with
   :ref:`clear_annotations() function <clear-annotations>` to remove a
   specific callback.

   (This is a proxy for
   :func:`~yt.visualization.plot_window.list_annotations`.)

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
    p.annotate_scale()
    p.annotate_timestamp()
    p.list_annotations()

.. _annotate-arrow:

Overplot Arrow
~~~~~~~~~~~~~~

.. function:: annotate_arrow(self, pos, length=0.03, coord_system='data', **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ArrowCallback`.)

    Overplot an arrow pointing at a position for highlighting a specific
    feature.  Arrow points from lower left to the designated position with
    arrow length "length".

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="c")
   slc.annotate_arrow((0.5, 0.5, 0.5), length=0.06, color="blue")
   slc.save()

.. _annotate-clumps:

Clump Finder Callback
~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_clumps(self, clumps, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ClumpContourCallback`.)

   Take a list of ``clumps`` and plot them as a set of
   contours.

.. python-script::

   import numpy as np

   import yt
   from yt.data_objects.level_sets.api import Clump, find_clumps

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   data_source = ds.disk([0.5, 0.5, 0.5], [0.0, 0.0, 1.0], (8.0, "kpc"), (1.0, "kpc"))

   c_min = 10 ** np.floor(np.log10(data_source["gas", "density"]).min())
   c_max = 10 ** np.floor(np.log10(data_source["gas", "density"]).max() + 1)

   master_clump = Clump(data_source, ("gas", "density"))
   master_clump.add_validator("min_cells", 20)

   find_clumps(master_clump, c_min, c_max, 2.0)
   leaf_clumps = master_clump.leaves

   prj = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   prj.annotate_clumps(leaf_clumps)
   prj.save("clumps")

.. _annotate-contours:

Overplot Contours
~~~~~~~~~~~~~~~~~

.. function:: annotate_contour(self, field, levels=5, factor=4, take_log=False,\
                               clim=None, plot_args=None, label=False, \
                               text_args=None, data_source=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ContourCallback`.)

   Add contours in ``field`` to the plot.  ``levels`` governs the number of
   contours generated, ``factor`` governs the number of points used in the
   interpolation, ``take_log`` governs how it is contoured and ``clim`` gives
   the (lower, upper) limits for contouring.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   s = yt.SlicePlot(ds, "x", ("gas", "density"), center="max")
   s.annotate_contour(("gas", "temperature"))
   s.save()

.. _annotate-quivers:

Overplot Quivers
~~~~~~~~~~~~~~~~

Axis-Aligned Data Sources
^^^^^^^^^^^^^^^^^^^^^^^^^

.. function:: annotate_quiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \
                              scale_units=None, normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.QuiverCallback`.)

   Adds a 'quiver' plot to any plot, using the ``field_x`` and ``field_y`` from
   the associated data, skipping every ``factor`` pixels in the
   discretization. A third field, ``field_c``, can be used as color; which is the
   counterpart of ``matplotlib.axes.Axes.quiver``'s final positional argument ``C``.
   ``scale`` is the data units per arrow length unit using
   ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by
   their local (in-plane) length, allowing morphological features to be more
   clearly seen for fields with substantial variation in field strength.
   All additional keyword arguments are passed down to ``matplotlib.Axes.axes.quiver``.

   Example using a constant color

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(
       ds,
       "z",
       ("gas", "density"),
       center=[0.5, 0.5, 0.5],
       weight_field="density",
       width=(20, "kpc"),
   )
   p.annotate_quiver(
      ("gas", "velocity_x"),
      ("gas", "velocity_y"),
      factor=16,
      color="purple",
   )
   p.save()


And now using a continuous colormap

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(
       ds,
       "z",
       ("gas", "density"),
       center=[0.5, 0.5, 0.5],
       weight_field="density",
       width=(20, "kpc"),
   )
   p.annotate_quiver(
      ("gas", "velocity_x"),
      ("gas", "velocity_y"),
      ("gas", "vorticity_z"),
      factor=16,
      cmap="inferno_r",
   )
   p.save()


Off-Axis Data Sources
^^^^^^^^^^^^^^^^^^^^^

.. function:: annotate_cquiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \
                               scale_units=None, normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.CuttingQuiverCallback`.)

   Get a quiver plot on top of a cutting plane, using the ``field_x`` and
   ``field_y`` from the associated data, skipping every ``factor`` datapoints in
   the discretization. ``scale`` is the data units per arrow length unit using
   ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by
   their local (in-plane) length, allowing morphological features to be more
   clearly seen for fields with substantial variation in field strength.
   Additional arguments can be passed to the ``plot_args`` dictionary, see
   matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   s = yt.OffAxisSlicePlot(ds, [1, 1, 0], [("gas", "density")], center="c")
   s.annotate_cquiver(
       ("gas", "cutting_plane_velocity_x"),
       ("gas", "cutting_plane_velocity_y"),
       factor=10,
       color="orange",
   )
   s.zoom(1.5)
   s.save()

.. _annotate-grids:

Overplot Grids
~~~~~~~~~~~~~~

.. function:: annotate_grids(self, alpha=0.7, min_pix=1, min_pix_ids=20, \
                             draw_ids=False, id_loc="lower left", \
                             periodic=True, min_level=None, \
                             max_level=None, cmap='B-W Linear_r', \
                             edgecolors=None, linewidth=1.0)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.GridBoundaryCallback`.)

   Adds grid boundaries to a plot, optionally with alpha-blending via the
   ``alpha`` keyword. Cuttoff for display is at ``min_pix`` wide. ``draw_ids``
   puts the grid id in the ``id_loc`` corner of the grid. (``id_loc`` can be
   upper/lower left/right. ``draw_ids`` is not so great in projections...)

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max")
   slc.annotate_grids()
   slc.save()

.. _annotate-cell-edges:

Overplot Cell Edges
~~~~~~~~~~~~~~~~~~~

.. function:: annotate_cell_edges(line_width=0.002, alpha=1.0, color='black')

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.CellEdgesCallback`.)

    Annotate the edges of cells, where the ``line_width`` relative to size of
    the longest plot axis is specified.  The ``alpha`` of the overlaid image and
    the ``color`` of the lines are also specifiable.  Note that because the
    lines are drawn from both sides of a cell, the image sometimes has the
    effect of doubling the line width.  Color here is a matplotlib color name or
    a 3-tuple of RGB float values.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max")
   slc.annotate_cell_edges()
   slc.save()


.. _annotate-image-line:

Overplot a Straight Line
~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_line(self, p1, p2, *, coord_system='data', **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.LinePlotCallback`.)

    Overplot a line with endpoints at p1 and p2.  p1 and p2
    should be 2D or 3D coordinates consistent with the coordinate
    system denoted in the "coord_system" keyword.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc"))
   p.annotate_line((0.3, 0.4), (0.8, 0.9), coord_system="axis")
   p.save()

.. _annotate-magnetic-field:

Overplot Magnetic Field Quivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_magnetic_field(self, factor=16, *, scale=None, \
                                      scale_units=None, normalize=False, \
                                      **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.MagFieldCallback`.)

   Adds a 'quiver' plot of magnetic field to the plot, skipping every ``factor``
   datapoints in the discretization. ``scale`` is the data units per arrow
   length unit using ``scale_units``. If ``normalize`` is ``True``, the
   magnetic fields will be scaled by their local (in-plane) length, allowing
   morphological features to be more clearly seen for fields with substantial
   variation in field strength. Additional arguments can be passed to the
   ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load(
       "MHDSloshing/virgo_low_res.0054.vtk",
       units_override={
           "time_unit": (1, "Myr"),
           "length_unit": (1, "Mpc"),
           "mass_unit": (1e17, "Msun"),
       },
   )
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(300, "kpc"))
   p.annotate_magnetic_field(headlength=3)
   p.save()

.. _annotate-marker:

Annotate a Point With a Marker
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_marker(self, pos, marker='x', *, coord_system='data', **kwargs)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.MarkerAnnotateCallback`.)

    Overplot a marker on a position for highlighting specific features.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(10, "kpc"))
   s.annotate_marker((-2, -2), coord_system="plot", color="blue", s=500)
   s.save()

.. _annotate-particles:

Overplotting Particle Positions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_particles(self, width, p_size=1.0, col='k', marker='o',\
                                 stride=1, ptype='all', alpha=1.0, data_source=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ParticleCallback`.)

   Adds particle positions, based on a thick slab along ``axis`` with a
   ``width`` along the line of sight.  ``p_size`` controls the number of pixels
   per particle, and ``col`` governs the color.  ``ptype`` will restrict plotted
   particles to only those that are of a given type.  ``data_source`` will only
   plot particles contained within the data_source object.

   WARNING: if ``data_source`` is a :class:`yt.data_objects.selection_data_containers.YTCutRegion`
   then the ``width`` parameter is ignored.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc"))
   p.annotate_particles((10, "Mpc"))
   p.save()

To plot only the central particles

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc"))
   sp = ds.sphere(p.data_source.center, ds.quan(1, "Mpc"))
   p.annotate_particles((10, "Mpc"), data_source=sp)
   p.save()

.. _annotate-sphere:

Overplot a Circle on a Plot
~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_sphere(self, center, radius, circle_args=None, \
                              coord_system='data', text=None, text_args=None)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.SphereCallback`.)

    Overplot a circle with designated center and radius with optional text.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_sphere([0.5, 0.5, 0.5], radius=(2, "kpc"), circle_args={"color": "black"})
   p.save()

.. _annotate-streamlines:

Overplot Streamlines
~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_streamlines(self, field_x, field_y, *, linewidth=1.0, linewidth_upscaling=1.0, \
                                   color=None, color_threshold=float('-inf'), factor=16, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.StreamlineCallback`.)

   Add streamlines to any plot, using the ``field_x`` and ``field_y`` from the
   associated data, using ``nx`` and ``ny`` starting points that are bounded by
   ``xstart`` and ``ystart``.  To begin streamlines from the left edge of the
   plot, set ``start_at_xedge`` to ``True``; for the bottom edge, use
   ``start_at_yedge``.  A line with the qmean vector magnitude will cover
   1.0/``factor`` of the image.

   Additional keyword arguments are passed down to
   `matplotlib.axes.Axes.streamplot <https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.streamplot.html>`_

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   s.annotate_streamlines(("gas", "velocity_x"), ("gas", "velocity_y"))
   s.save()

.. _annotate-line-integral-convolution:

Overplot Line Integral Convolution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_line_integral_convolution(self, field_x, field_y, \
                                                 texture=None, kernellen=50., \
                                                 lim=(0.5,0.6), cmap='binary', \
                                                 alpha=0.8, const_alpha=False)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.LineIntegralConvolutionCallback`.)

   Add line integral convolution to any plot, using the ``field_x`` and ``field_y``
   from the associated data. A white noise background will be used for ``texture``
   as default. Adjust the bounds of ``lim`` in the range of ``[0, 1]`` which applies
   upper and lower bounds to the values of line integral convolution and enhance
   the visibility of plots. When ``const_alpha=False``, alpha will be weighted
   spatially by the values of line integral convolution; otherwise a constant value
   of the given alpha is used.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   s.annotate_line_integral_convolution(("gas", "velocity_x"), ("gas", "velocity_y"), lim=(0.5, 0.65))
   s.save()

.. _annotate-text:

Overplot Text
~~~~~~~~~~~~~

.. function:: annotate_text(self, pos, text, coord_system='data', \
                            text_args=None, inset_box_args=None)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.TextLabelCallback`.)

    Overplot text on the plot at a specified position. If you desire an inset
    box around your text, set one with the inset_box_args dictionary
    keyword.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="max", width=(10, "kpc"))
   s.annotate_text((2, 2), "Galaxy!", coord_system="plot")
   s.save()

.. _annotate-title:

Add a Title
~~~~~~~~~~~

.. function:: annotate_title(self, title='Plot')

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TitleCallback`.)

   Accepts a ``title`` and adds it to the plot.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_title("Density Plot")
   p.save()

.. _annotate-velocity:

Overplot Quivers for the Velocity Field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_velocity(self, factor=16, *, scale=None, scale_units=None, \
                                normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.VelocityCallback`.)

   Adds a 'quiver' plot of velocity to the plot, skipping every ``factor``
   datapoints in the discretization. ``scale`` is the data units per arrow
   length unit using ``scale_units``. If ``normalize`` is ``True``, the
   velocity fields will be scaled by their local (in-plane) length, allowing
   morphological features to be more clearly seen for fields with substantial
   variation in field strength. Additional arguments can be passed to the
   ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc"))
   p.annotate_velocity(headwidth=4)
   p.save()

.. _annotate-timestamp:

Add the Current Time and/or Redshift
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_timestamp(x_pos=None, y_pos=None, corner='lower_left',\
                                 time=True, redshift=False, \
                                 time_format='t = {time:.1f} {units}', \
                                 time_unit=None, time_offset=None, \
                                 redshift_format='z = {redshift:.2f}', \
                                 draw_inset_box=False, coord_system='axis', \
                                 text_args=None, inset_box_args=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TimestampCallback`.)

    Annotates the timestamp and/or redshift of the data output at a specified
    location in the image (either in a present corner, or by specifying (x,y)
    image coordinates with the x_pos, y_pos arguments.  If no time_units are
    specified, it will automatically choose appropriate units.  It allows for
    custom formatting of the time and redshift information, the specification
    of an inset box around the text, and changing the value of the timestamp
    via a constant offset.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_timestamp()
   p.save()

.. _annotate-scale:

Add a Physical Scale Bar
~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_scale(corner='lower_right', coeff=None, \
                             unit=None, pos=None, \
                             scale_text_format="{scale} {units}", \
                             max_frac=0.16, min_frac=0.015, \
                             coord_system='axis', text_args=None, \
                             size_bar_args=None, draw_inset_box=False, \
                             inset_box_args=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ScaleCallback`.)

    Annotates the scale of the plot at a specified location in the image
    (either in a preset corner, or by specifying (x,y) image coordinates with
    the pos argument.  Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the
    distance scale you desire to show on the plot.  If no coeff and units are
    specified, an appropriate pair will be determined such that your scale bar
    is never smaller than min_frac or greater than max_frac of your plottable
    axis length.  Additional customization of the scale bar is possible by
    adjusting the text_args and size_bar_args dictionaries.  The text_args
    dictionary accepts matplotlib's font_properties arguments to override
    the default font_properties for the current plot.  The size_bar_args
    dictionary accepts keyword arguments for the AnchoredSizeBar class in
    matplotlib's axes_grid toolkit. Finally, the format of the scale bar text
    can be adjusted using the scale_text_format keyword argument.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_scale()
   p.save()

.. _annotate-triangle-facets:

Annotate Triangle Facets Callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_triangle_facets(triangle_vertices, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TriangleFacetsCallback`.)

   This add a line collection of a SlicePlot's plane-intersection
   with the triangles to the plot. This callback is ideal for a
   dataset representing a geometric model of triangular facets.

.. python-script::

   import os

   import h5py

   import yt

   # Load data file
   ds = yt.load("MoabTest/fng_usrbin22.h5m")

   # Create the desired slice plot
   s = yt.SlicePlot(ds, "z", ("moab", "TALLY_TAG"))

   # get triangle vertices from file (in this case hdf5)

   # setup file path for yt test directory
   filename = os.path.join(
       yt.config.ytcfg.get("yt", "test_data_dir"), "MoabTest/mcnp_n_impr_fluka.h5m"
   )
   f = h5py.File(filename, mode="r")
   coords = f["/tstt/nodes/coordinates"][:]
   conn = f["/tstt/elements/Tri3/connectivity"][:]
   points = coords[conn - 1]

   # Annotate slice-triangle intersection contours to the plot
   s.annotate_triangle_facets(points, colors="black")
   s.save()

.. _annotate-mesh-lines:

Annotate Mesh Lines Callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_mesh_lines(**kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.MeshLinesCallback`.)

   This draws the mesh line boundaries over a plot using a Matplotlib
   line collection. This callback is only useful for unstructured or
   semi-structured mesh datasets.

.. python-script::

   import yt

   ds = yt.load("MOOSE_sample_data/out.e")
   sl = yt.SlicePlot(ds, "z", ("connect1", "nodal_aux"))
   sl.annotate_mesh_lines(color="black")
   sl.save()

.. _annotate-ray:

Overplot the Path of a Ray
~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_ray(ray, *, arrow=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.RayCallback`.)

    Adds a line representing the projected path of a ray across the plot.  The
    ray can be either a
    :class:`~yt.data_objects.selection_objects.ray.YTOrthoRay`,
    :class:`~yt.data_objects.selection_objects.ray.YTRay`, or a
    Trident :class:`~trident.light_ray.LightRay`
    object.  annotate_ray() will properly account for periodic rays across the
    volume.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   oray = ds.ortho_ray(0, (0.3, 0.4))
   ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8))
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"))
   p.annotate_ray(oray)
   p.annotate_ray(ray)
   p.save()


Applying filters on the final image
-----------------------------------

It is also possible to operate on the plotted image directly by using
one of the fixed resolution buffer filter as described in
:ref:`frb-filters`.
Note that it is necessary to call the plot object's ``refresh`` method
to apply filters.

.. python-script::

   import yt

   ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030')
   p = yt.SlicePlot(ds, 'z', 'density')
   p.frb.apply_gauss_beam(sigma=30)
   p.refresh()
   p.save()


.. _extend-annotations:


Extending annotations methods
-----------------------------

New ``annotate_`` methods can be added to plot objects at runtime (i.e., without
modifying yt's source code) by subclassing the base ``PlotCallback`` class.
This is the recommended way to add custom and unique annotations to yt plots,
as it can be done through local plugins, individual scripts, or even external packages.

Here's a minimal example:


.. python-script::

   import yt
   from yt.visualization.api import PlotCallback


   class TextToPositionCallback(PlotCallback):
      # bind a new `annotate_text_to_position` plot method
      _type_name = "text_to_position"

      def __init__(self, text, x, y):
         # this method can have arbitrary arguments
         # and should store them without alteration,
         # but not run expensive computations
         self.text = text
         self.position = (x, y)

      def __call__(self, plot):
         # this method's signature is required
         # this is where we perform potentially expensive operations

         # the plot argument exposes matplotlib objects:
         # - plot._axes is a matplotlib.axes.Axes object
         # - plot._figure is a matplotlib.figure.Figure object
         plot._axes.annotate(
               self.text,
               xy=self.position,
               xycoords="data",
               xytext=(0.2, 0.6),
               textcoords="axes fraction",
               color="white",
               fontsize=30,
               arrowprops=dict(facecolor="black", shrink=0.05),
         )

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", "density")
   p.annotate_text_to_position("Galactic center !", x=0, y=0)
   p.save()