Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
yt-project
GitHub Repository: yt-project/yt
Path: blob/main/doc/source/visualizing/unstructured_mesh_rendering.rst
928 views
.. _unstructured_mesh_rendering:

Unstructured Mesh Rendering
===========================

Beginning with version 3.3, yt has the ability to volume render unstructured
mesh data like that created by finite element calculations. No additional
dependencies are required in order to use this feature. However, it is
possible to speed up the rendering operation by installing with
`Embree <https://www.embree.org>`_ support. Embree is a fast ray-tracing
library from Intel that can substantially speed up the mesh rendering operation
on large datasets. You can read about how to install yt with Embree support
below, or you can skip to the examples.

Optional Embree Installation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You'll need to `install Python bindings for netCDF4 <https://github.com/Unidata/netcdf4-python#installation>`_.
Then you'll need to get Embree itself and its corresponding Python bindings (pyembree).
For conda-based systems, this is trivial, see
`pyembree's doc <https://github.com/scopatz/pyembree#installation>`_

For systems other than conda, you will need to install Embree first, either by
`compiling from source <https://github.com/embree/embree#installation-of-embree>`_
or by using one of the pre-built binaries available at Embree's
`releases <https://github.com/embree/embree/releases>`_ page.

Then you'll want to install pyembree from source as follows.

.. code-block:: bash

    git clone https://github.com/scopatz/pyembree

To install, navigate to the root directory and run the setup script.
If Embree was installed to some location that is not in your path by default,
you will need to pass in CFLAGS and LDFLAGS to the setup.py script. For example,
the Mac OS X package installer puts the installation at /opt/local/ instead of
usr/local. To account for this, you would do:

.. code-block:: bash

    CFLAGS='-I/opt/local/include' LDFLAGS='-L/opt/local/lib' python setup.py install

Once Embree and pyembree are installed, a,d in order to use the unstructured
mesh rendering capability, you must :ref:`rebuild yt from source
<install-from-source>`, . Once again, if embree is installed in a location that
is not part of your default search path, you must tell yt where to find it.
There are a number of ways to do this. One way is to again manually pass in the
flags when running the setup script in the yt-git directory:

.. code-block:: bash

    CFLAGS='-I/opt/local/include' LDFLAGS='-L/opt/local/lib' python setup.py develop

You can also set EMBREE_DIR environment variable to '/opt/local', in which case
you could just run

.. code-block:: bash

   python setup.py develop

as usual. Finally, if you create a file called embree.cfg in the yt-git directory with
the location of the embree installation, the setup script will find this and use it,
provided EMBREE_DIR is not set. An example embree.cfg file could like this:

.. code-block:: bash

   /opt/local/

We recommend one of the later two methods, especially
if you plan on re-compiling the cython extensions regularly. Note that none of this is
necessary if you installed embree into a location that is in your default path, such
as /usr/local.

Examples
^^^^^^^^

First, here is an example of rendering an 8-node, hexahedral MOOSE dataset.

.. python-script::

    import yt

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # create a default scene
    sc = yt.create_scene(ds)

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # adjust the camera position and orientation
    cam = sc.camera
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam_pos = ds.arr([-3.0, 3.0, -3.0], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.set_position(cam_pos, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render and save
    sc.save()

You can also overplot the mesh boundaries:

.. python-script::

    import yt

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # create a default scene
    sc = yt.create_scene(ds)

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # adjust the camera position and orientation
    cam = sc.camera
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam_pos = ds.arr([-3.0, 3.0, -3.0], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.set_position(cam_pos, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render, draw the element boundaries, and save
    sc.render()
    sc.annotate_mesh_lines()
    sc.save()

As with slices, you can visualize different meshes and different fields. For example,
Here is a script similar to the above that plots the "diffused" variable
using the mesh labelled by "connect2":

.. python-script::

    import yt

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # create a default scene
    sc = yt.create_scene(ds, ("connect2", "diffused"))

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # adjust the camera position and orientation
    cam = sc.camera
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam_pos = ds.arr([-3.0, 3.0, -3.0], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.set_position(cam_pos, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render and save
    sc.save()

Next, here is an example of rendering a dataset with tetrahedral mesh elements.
Note that in this dataset, there are multiple "steps" per file, so we specify
that we want to look at the last one.

.. python-script::

    import yt

    filename = "MOOSE_sample_data/high_order_elems_tet4_refine_out.e"
    ds = yt.load(filename, step=-1)  # we look at the last time frame

    # create a default scene
    sc = yt.create_scene(ds, ("connect1", "u"))

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # adjust the camera position and orientation
    cam = sc.camera
    camera_position = ds.arr([3.0, 3.0, 3.0], "code_length")
    cam.set_width(ds.arr([2.0, 2.0, 2.0], "code_length"))
    north_vector = ds.arr([0.0, -1.0, 0.0], "dimensionless")
    cam.set_position(camera_position, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render and save
    sc.save()

Here is an example using 6-node wedge elements:

.. python-script::

   import yt

   ds = yt.load("MOOSE_sample_data/wedge_out.e")

   # create a default scene
   sc = yt.create_scene(ds, ("connect2", "diffused"))

   # override the default colormap
   ms = sc.get_source()
   ms.cmap = "Eos A"

   # adjust the camera position and orientation
   cam = sc.camera
   cam.set_position(ds.arr([1.0, -1.0, 1.0], "code_length"))
   cam.width = ds.arr([1.5, 1.5, 1.5], "code_length")

   # render and save
   sc.save()

Another example, this time plotting the temperature field from a 20-node hex
MOOSE dataset:

.. python-script::

    import yt

    # We load the last time frame
    ds = yt.load("MOOSE_sample_data/mps_out.e", step=-1)

    # create a default scene
    sc = yt.create_scene(ds, ("connect2", "temp"))

    # override the default colormap. This time we also override
    # the default color bounds
    ms = sc.get_source()
    ms.cmap = "hot"
    ms.color_bounds = (500.0, 1700.0)

    # adjust the camera position and orientation
    cam = sc.camera
    camera_position = ds.arr([-1.0, 1.0, -0.5], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.width = ds.arr([0.04, 0.04, 0.04], "code_length")
    cam.set_position(camera_position, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render, draw the element boundaries, and save
    sc.render()
    sc.annotate_mesh_lines()
    sc.save()

The dataset in the above example contains displacement fields, so this is a good
opportunity to demonstrate their use. The following example is exactly like the
above, except we scale the displacements by a factor of a 10.0, and additionally
add an offset to the mesh by 1.0 unit in the x-direction:

.. python-script::

    import yt

    # We load the last time frame
    ds = yt.load(
        "MOOSE_sample_data/mps_out.e",
        step=-1,
        displacements={"connect2": (10.0, [0.01, 0.0, 0.0])},
    )

    # create a default scene
    sc = yt.create_scene(ds, ("connect2", "temp"))

    # override the default colormap. This time we also override
    # the default color bounds
    ms = sc.get_source()
    ms.cmap = "hot"
    ms.color_bounds = (500.0, 1700.0)

    # adjust the camera position and orientation
    cam = sc.camera
    camera_position = ds.arr([-1.0, 1.0, -0.5], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.width = ds.arr([0.05, 0.05, 0.05], "code_length")
    cam.set_position(camera_position, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render, draw the element boundaries, and save
    sc.render()
    sc.annotate_mesh_lines()
    sc.save()

As with other volume renderings in yt, you can swap out different lenses. Here is
an example that uses a "perspective" lens, for which the rays diverge from the
camera position according to some opening angle:

.. python-script::

    import yt

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # create a default scene
    sc = yt.create_scene(ds, ("connect2", "diffused"))

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # Create a perspective Camera
    cam = sc.add_camera(ds, lens_type="perspective")
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam_pos = ds.arr([-4.5, 4.5, -4.5], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.set_position(cam_pos, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # render, draw the element boundaries, and save
    sc.render()
    sc.annotate_mesh_lines()
    sc.save()

You can also create scenes that have multiple meshes. The ray-tracing infrastructure
will keep track of the depth information for each source separately, and composite
the final image accordingly. In the next example, we show how to render a scene
with two meshes on it:

.. python-script::

    import yt
    from yt.visualization.volume_rendering.api import MeshSource, Scene

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # this time we create an empty scene and add sources to it one-by-one
    sc = Scene()

    # set up our Camera
    cam = sc.add_camera(ds)
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam.set_position(
        ds.arr([-3.0, 3.0, -3.0], "code_length"),
        ds.arr([0.0, -1.0, 0.0], "dimensionless"),
    )
    cam.set_width = ds.arr([8.0, 8.0, 8.0], "code_length")
    cam.resolution = (800, 800)

    # create two distinct MeshSources from 'connect1' and 'connect2'
    ms1 = MeshSource(ds, ("connect1", "diffused"))
    ms2 = MeshSource(ds, ("connect2", "diffused"))

    sc.add_source(ms1)
    sc.add_source(ms2)

    # render and save
    im = sc.render()
    sc.save()

However, in the rendered image above, we note that the color is discontinuous on
in the middle and upper part of the cylinder's side. In the original data,
there are two parts but the value of ``diffused`` is continuous at the interface.
This discontinuous color is due to an independent colormap setting for the two
mesh sources. To fix it, we can explicitly specify the colormap bound for each
mesh source as follows:

.. python-script::

    import yt
    from yt.visualization.volume_rendering.api import MeshSource, Scene

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # this time we create an empty scene and add sources to it one-by-one
    sc = Scene()

    # set up our Camera
    cam = sc.add_camera(ds)
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam.set_position(
        ds.arr([-3.0, 3.0, -3.0], "code_length"),
        ds.arr([0.0, -1.0, 0.0], "dimensionless"),
    )
    cam.set_width = ds.arr([8.0, 8.0, 8.0], "code_length")
    cam.resolution = (800, 800)

    # create two distinct MeshSources from 'connect1' and 'connect2'
    ms1 = MeshSource(ds, ("connect1", "diffused"))
    ms2 = MeshSource(ds, ("connect2", "diffused"))

    # add the following lines to set the range of the two mesh sources
    ms1.color_bounds = (0.0, 3.0)
    ms2.color_bounds = (0.0, 3.0)

    sc.add_source(ms1)
    sc.add_source(ms2)

    # render and save
    im = sc.render()
    sc.save()

Making Movies
^^^^^^^^^^^^^

Here are a couple of example scripts that show how to create image frames that
can later be stitched together into a movie. In the first example, we look at a
single dataset at a fixed time, but we move the camera around to get a different
vantage point. We call the rotate() method 300 times, saving a new image to the
disk each time.

.. code-block:: python

    import numpy as np

    import yt

    ds = yt.load("MOOSE_sample_data/out.e-s010")

    # create a default scene
    sc = yt.create_scene(ds)

    # override the default colormap
    ms = sc.get_source()
    ms.cmap = "Eos A"

    # adjust the camera position and orientation
    cam = sc.camera
    cam.focus = ds.arr([0.0, 0.0, 0.0], "code_length")
    cam_pos = ds.arr([-3.0, 3.0, -3.0], "code_length")
    north_vector = ds.arr([0.0, -1.0, -1.0], "dimensionless")
    cam.set_position(cam_pos, north_vector)

    # increase the default resolution
    cam.resolution = (800, 800)

    # set the camera to use "steady_north"
    cam.steady_north = True

    # make movie frames
    num_frames = 301
    for i in range(num_frames):
        cam.rotate(2.0 * np.pi / num_frames)
        sc.render()
        sc.save("movie_frames/surface_render_%.4d.png" % i)

Finally, this example demonstrates how to loop over the time steps in a single
file with a fixed camera position:

.. code-block:: python

    import matplotlib.pyplot as plt

    import yt
    from yt.visualization.volume_rendering.api import MeshSource

    NUM_STEPS = 127
    CMAP = "hot"
    VMIN = 300.0
    VMAX = 2000.0

    for step in range(NUM_STEPS):
        ds = yt.load("MOOSE_sample_data/mps_out.e", step=step)

	time = ds._get_current_time()

	# the field name is a tuple of strings. The first string
	# specifies which mesh will be plotted, the second string
	# specifies the name of the field.
	field_name = ('connect2', 'temp')

	# this initializes the render source
	ms = MeshSource(ds, field_name)

	# set up the camera here. these values were arrived by
	# calling pitch, yaw, and roll in the notebook until I
	# got the angle I wanted.
	sc.add_camera(ds)
	camera_position = ds.arr([0.1, 0.0, 0.1], 'code_length')
	cam.focus = ds.domain_center
	north_vector = ds.arr([-0.3032476, -0.71782557, 0.62671153], 'dimensionless')
	cam.width = ds.arr([ 0.04,  0.04,  0.04], 'code_length')
	cam.resolution = (800, 800)
	cam.set_position(camera_position, north_vector)

	# actually make the image here
	im = ms.render(cam, cmap=CMAP, color_bounds=(VMIN, VMAX))

	# Plot the result using matplotlib and save.
	# Note that we are setting the upper and lower
	# bounds of the colorbar to be the same for all
	# frames of the image.

	# must clear the image between frames
	plt.clf()
	fig = plt.gcf()
	ax = plt.gca()
	ax.imshow(im, interpolation='nearest', origin='lower')

	# Add the colorbar using a fake (not shown) image.
	p = ax.imshow(ms.data, visible=False, cmap=CMAP, vmin=VMIN, vmax=VMAX)
	cb = fig.colorbar(p)
	cb.set_label(field_name[1])

	ax.text(25, 750, 'time = %.2e' % time, color='k')
	ax.axes.get_xaxis().set_visible(False)
	ax.axes.get_yaxis().set_visible(False)

	plt.savefig('movie_frames/test_%.3d' % step)