Kernel: M2
Macaulay2 on CoCalc
Examples picked from http://www2.macaulay2.com/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Macaulay2Doc/html/index.html
In [1]:
Out[1]:
o1 = 15511210043330985984000000
In [2]:
Out[2]:
o4 = | a b c |
     | b c d |
     | c d e |
             3       3
o4 : Matrix S  <--- S
In [3]:
Out[3]:
o5 = | a2+b2+c2 ab+bc+cd ac+bd+ce |
     | ab+bc+cd b2+c2+d2 bc+cd+de |
     | ac+bd+ce bc+cd+de c2+d2+e2 |
             3       3
o5 : Matrix S  <--- S
In [4]:
Out[4]:
        3               2    2
o6 = - c  + 2b*c*d - a*d  - b e + a*c*e
o6 : S
In [2]:
Out[2]:
o3 = X
o3 : ProjectiveVariety
In [3]:
Out[3]:
o4 = cokernel {2} | c  0  0  d  0   a3  b3 0  |
              {2} | a  d  0  0  b3  -c3 0  0  |
              {2} | -b 0  d  0  a3  0   c3 0  |
              {2} | 0  b  a  0  -d3 0   0  c3 |
              {2} | 0  -c 0  a  0   -d3 0  b3 |
              {2} | 0  0  -c -b 0   0   d3 a3 |
                                         6
o4 : coherent sheaf on X, quotient of OO  (-2)
                                        X
In [4]:
Out[4]:
       20
o5 = QQ
o5 : QQ-module, free
In [5]:
Out[5]:
o6 = cokernel | a b |
                                         1
o6 : coherent sheaf on X, quotient of OO
                                        X
In [6]:
Out[6]:
o7 = cokernel | a b |
                            1
o7 : R-module, quotient of R
In [10]:
Out[10]:
o20 = | x_0 0   0   0   0   |
      | 0   x_2 0   0   0   |
      | 0   0   x_4 0   0   |
      | 0   0   0   x_1 0   |
      | 0   0   0   0   x_3 |
              5       5
o20 : Matrix R  <--- R
In [11]:
Out[11]:
o21 = | 0   x_1 0   0   x_4 |
      | x_1 0   x_3 0   0   |
      | 0   x_3 0   x_0 0   |
      | 0   0   x_0 0   x_2 |
      | x_4 0   0   x_2 0   |
              5       5
o21 : Matrix R  <--- R
In [12]:
Out[12]:
o22 = | 0   0   x_2 x_3 0   |
      | 0   0   0   x_4 x_0 |
      | x_2 0   0   0   x_1 |
      | x_3 x_4 0   0   0   |
      | 0   x_0 x_1 0   0   |
              5       5
o22 : Matrix R  <--- R
In [13]:
Out[13]:
              5       15
o23 : Matrix R  <--- R
In [21]:
Out[21]:
             0  1  2  3  4 5
o31 = total: 5 15 29 37 20 2
          0: 5 15 10  2  . .
          1: .  .  4  .  . .
          2: .  . 15 35 20 .
          3: .  .  .  .  . 2
o31 : BettiTally
In [25]:
Out[25]:
              35       19
o35 : Matrix R   <--- R
In [26]:
Out[26]:
              0  1  2  3  4 5
o36 = total: 35 19 19 35 20 2
         -5: 35 15  .  .  . .
         -4:  .  4  .  .  . .
         -3:  .  .  .  .  . .
         -2:  .  .  .  .  . .
         -1:  .  .  .  .  . .
          0:  .  .  4  .  . .
          1:  .  . 15 35 20 .
          2:  .  .  .  .  . 2
o36 : BettiTally
In [27]:
Out[27]:
o37 = Pfour
o37 : ProjectiveVariety
In [28]:
Out[28]:
In [29]:
Out[29]:
o39 = cokernel {-1} | x_4 x_2  0   0   x_0  0   0    0    x_3 0   0   0    0   0    x_1 |
               {-1} | 0   -x_3 x_1 0   0    x_4 x_2  0    0   0   0   x_0  0   0    0   |
               {-1} | 0   0    0   x_3 -x_2 x_0 0    x_1  0   0   0   0    0   -x_4 0   |
               {-1} | 0   0    0   0   0    0   -x_4 -x_2 x_1 x_0 x_3 0    0   0    0   |
               {-1} | 0   0    0   0   0    0   0    0    0   0   x_4 -x_3 x_2 x_1  x_0 |
                             5
o39 : R-module, quotient of R
In [30]:
Out[30]:
o40 = (5, 10, 10, 2)
o40 : Sequence
In [0]: