Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 62
Kernel: SageMath 8.0
version()
'SageMath version 8.0, Release Date: 2017-07-21'
%display latex

General case: F(t)

Spacetime

M = Manifold(4, 'M') print(M)
4-dimensional differentiable manifold M
XBL.<t,x,th,ph> = M.chart(r't x th:(0,pi):\theta ph:(0,2*pi):\phi') XBL
g = M.lorentzian_metric('g') F=function('F')(t) g[0,0]=-1/F g[1,1]=F g[2,2]=t^2 g[3,3]=t^2*sin(th)^2 g.display()

Ricci's scalar

Ric = g.ricci_scalar() ; print(Ric)
Scalar field r(g) on the 4-dimensional differentiable manifold M
Ric.expr().factor()

Kretschmann's scalar

R = g.riemann() ; print(R)
Tensor field Riem(g) of type (1,3) on the 4-dimensional differentiable manifold M
dR = R.down(g); print(dR)
Tensor field of type (0,4) on the 4-dimensional differentiable manifold M
uR = R.up(g); print(uR)
Tensor field of type (4,0) on the 4-dimensional differentiable manifold M
Kr_scalar = uR['^{abcd}']*dR['_{abcd}'] K=Kr_scalar.expr().factor() K

Case 1 (Hayward): F_1(t)=\frac{2t^2}{t^3+2b^2}-1 --> nonsingular

var('b');

Spacetime

g1 = M.lorentzian_metric('g1') F1=2*t^2/(t^3+2*b)-1 g1[0,0]=-1/F1 g1[1,1]=F1 g1[2,2]=t^2 g1[3,3]=t^2*sin(th)^2 g1.display()

Ricci's scalar

Ric1 = g1.ricci_scalar() ; print(Ric1)
Scalar field r(g1) on the 4-dimensional differentiable manifold M
Ric1.expr().factor()

Kretschmann's scalar

R1 = g1.riemann() ; print(R1)
Tensor field Riem(g1) of type (1,3) on the 4-dimensional differentiable manifold M
dR1 = R1.down(g1); print(dR1)
Tensor field of type (0,4) on the 4-dimensional differentiable manifold M
uR1 = R1.up(g1); print(uR1)
Tensor field of type (4,0) on the 4-dimensional differentiable manifold M
Kr_scalar1 = uR1['^{abcd}']*dR1['_{abcd}'] K1=Kr_scalar1.expr().factor() K1

Case 2: F_2(t)=\frac{2t}{t^2+2b}-1 --> singular

Spacetime

g2 = M.lorentzian_metric('g2') F2=2*t/(t^2+2*b)-1 g2[0,0]=-1/F2 g2[1,1]=F2 g2[2,2]=t^2 g2[3,3]=t^2*sin(th)^2 g2.display()

Ricci's scalar

Ric2 = g2.ricci_scalar() ; print(Ric2)
Scalar field r(g2) on the 4-dimensional differentiable manifold M
Ric2.expr().factor()

Kretschmann's scalar

R2 = g2.riemann() ; print(R2)
Tensor field Riem(g2) of type (1,3) on the 4-dimensional differentiable manifold M
dR2 = R2.down(g2); print(dR2)
Tensor field of type (0,4) on the 4-dimensional differentiable manifold M
uR2 = R2.up(g2); print(uR2)
Tensor field of type (4,0) on the 4-dimensional differentiable manifold M
Kr_scalar2 = uR2['^{abcd}']*dR2['_{abcd}'] K2=Kr_scalar2.expr().factor() K2