(0, 1, 1, 1, 2, 1)
(-1, -1/2, -1/2, 0, 1)
True
(0, 1, 1, 1, 2, 1)
((-q - 1)/(q^2 + 1), -q/(q^2 + 1), -q/(q^2 + 1), (-q + 1)/(q^2 + 1), (q + 1)/(q^2 + 1))
True
(0, 1, 1, 1, 1, 1, 2, 1, 1, 1)
((-q^3 - 1)/(q^4 + 1), (-q^3 - q)/(q^4 + 1), (-q^3 - q^2)/(q^4 + 1), -q^3/(q^4 + 1), -q^3/(q^4 + 1), (-q^3 + 1)/(q^4 + 1), (-q^3 + q)/(q^4 + 1), (-q^3 + q^2)/(q^4 + 1), (q^3 + 1)/(q^4 + 1))
True
True
True
True
True
Vector space of degree 35 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -2 -1]
[ 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0]
[ 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0]
[ 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0]
[ 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1]
[ 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1]
Vector space of degree 35 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 -1 0 -1 0 0 -1 0 -1 -1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -2]
[ 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1]
[ 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1]
[ 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1]
[ 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1]
[ 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1]
Vector space of degree 35 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -2 -1]
[ 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0]
[ 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0]
[ 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0]
[ 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1]
[ 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1]
Vector space of degree 35 and dimension 2 over Rational Field
Basis matrix:
[0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1]
True
True
True
True
Vector space of degree 16 and dimension 7 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 -2]
[ 0 0 1 0 0 0 0 0 0 0 -1 -1 0 -1 0 -2]
[ 0 0 0 1 0 0 1 0 0 0 2 2 -1 1 0 2]
[ 0 0 0 0 1 0 1 1 0 0 2 2 0 2 0 3]
[ 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 2]
[ 0 0 0 0 0 0 0 0 1 1 -1 -1 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 16 and dimension 7 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 -2]
[ 0 0 1 0 0 0 -1 -1 0 0 0 0 -1 -1 0 -1]
[ 0 0 0 1 0 0 1 0 0 -1 2 1 0 2 0 2]
[ 0 0 0 0 1 0 1 1 0 0 2 2 0 2 0 3]
[ 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 2]
[ 0 0 0 0 0 0 0 0 1 1 -1 -1 1 -1 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 16 and dimension 5 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 -1 -1 0 0 -1 -1 -1 0]
[ 0 0 1 0 0 0 0 0 0 0 -1 -1 0 -1 -1 -1]
[ 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0]
[ 0 0 0 0 1 0 1 1 1 1 1 1 1 2 1 1]
[ 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1]
Vector space of degree 16 and dimension 2 over Rational Field
Basis matrix:
[0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1]
[0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1]
True
True
True
True
Vector space of degree 12 and dimension 9 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 0 -1]
[ 0 0 1 0 0 0 0 0 0 0 0 -1]
[ 0 0 0 1 0 0 0 0 0 0 0 -1]
[ 0 0 0 0 1 0 0 0 0 0 0 -1]
[ 0 0 0 0 0 1 0 1 0 0 0 4]
[ 0 0 0 0 0 0 1 1 0 0 0 4]
[ 0 0 0 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 12 and dimension 9 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 0 -1]
[ 0 0 1 0 0 0 0 0 0 0 0 -1]
[ 0 0 0 1 0 0 0 0 0 0 0 -1]
[ 0 0 0 0 1 0 0 -1 0 0 0 0]
[ 0 0 0 0 0 1 0 1 0 0 0 4]
[ 0 0 0 0 0 0 1 1 0 0 0 4]
[ 0 0 0 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 12 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 -1 0 0 0]
[ 0 0 1 0 0 0 0 0 0 -1 0 0]
[ 0 0 0 1 0 0 0 0 0 0 -1 0]
[ 0 0 0 0 1 0 0 0 0 0 0 -1]
[ 0 0 0 0 0 1 0 1 1 1 1 1]
[ 0 0 0 0 0 0 1 1 1 1 1 1]
Vector space of degree 12 and dimension 5 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 -1 0 0 0]
[ 0 0 1 0 0 0 0 0 0 -1 0 0]
[ 0 0 0 1 0 0 0 0 0 0 -1 0]
[ 0 0 0 0 0 1 0 1 1 1 1 1]
[ 0 0 0 0 0 0 1 1 1 1 1 1]
True
True
True
True
Vector space of degree 27 and dimension 11 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 0 0 -3]
[ 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 0 0 -3]
[ 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 0 0 -3]
[ 0 0 0 0 1 0 1 0 0 0 0 0 3 0 3 -1 -1 2 0 3 -2 1 3 1 0 0 4]
[ 0 0 0 0 0 1 1 0 1 0 0 0 3 0 3 0 0 3 0 3 -1 2 3 2 0 0 6]
[ 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 2 2 0 2 0 0 4]
[ 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 -1 1 1 0 0 -1 1 0 -1 0 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 1 -1 0 -1 2 1 -2 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 0 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 27 and dimension 11 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 0 0 -3]
[ 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 0 0 -3]
[ 0 0 0 1 0 0 -1 0 -1 0 0 0 0 0 0 -1 -1 -1 0 0 -1 -1 0 -1 0 0 -2]
[ 0 0 0 0 1 0 1 0 0 0 -1 0 3 -1 2 0 0 3 0 3 -2 1 3 1 0 0 4]
[ 0 0 0 0 0 1 1 0 1 0 0 0 3 0 3 0 0 3 0 3 -1 2 3 2 0 0 6]
[ 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 2 2 0 2 0 0 4]
[ 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 -1 1 0 -1 0 -1 2 1 -2 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 1 -1 0 -2 2 0 -1 1 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 -1 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 27 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0]
[ 0 0 1 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 -1 -1 -1 0 -1 -1 -1 0]
[ 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 0 -1 -1 -1 -1 -1 -1]
[ 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 2 0 1 1 1 1 1 0]
[ 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 2 2 1 1]
[ 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1]
Vector space of degree 27 and dimension 1 over Rational Field
Basis matrix:
[0 1 1 0 0 1 1 1 2 0 1 0 1 1 2 1 1 2 0 1 1 2 1 2 1 1 2]
True
True
True
True
Vector space of degree 56 and dimension 17 over Rational Field
Basis matrix:
17 x 56 dense matrix over Rational Field
Vector space of degree 56 and dimension 17 over Rational Field
Basis matrix:
17 x 56 dense matrix over Rational Field
Vector space of degree 56 and dimension 7 over Rational Field
Basis matrix:
7 x 56 dense matrix over Rational Field
Vector space of degree 56 and dimension 1 over Rational Field
Basis matrix:
1 x 56 dense matrix over Rational Field
True
False
True
False
Vector space of degree 132 and dimension 5 over Rational Field
Basis matrix:
5 x 132 dense matrix over Rational Field
Vector space of degree 132 and dimension 5 over Rational Field
Basis matrix:
5 x 132 dense matrix over Rational Field
Vector space of degree 132 and dimension 1 over Rational Field
Basis matrix:
1 x 132 dense matrix over Rational Field
Vector space of degree 132 and dimension 0 over Rational Field
Basis matrix:
0 x 132 dense matrix over Rational Field
True
False
False
False
Vector space of degree 20 and dimension 5 over Rational Field
Basis matrix:
[ 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1]
[ 0 0 1 0 1 0 1 0 1 1 0 1 1/2 1/2 1/2 3/2 -1/2 1/2 0 1]
[ 0 0 0 1 0 1 1 0 1 0 1 1 1/2 1/2 1/2 1/2 1/2 1/2 0 1]
[ 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 1 -1 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 20 and dimension 5 over Rational Field
Basis matrix:
[ 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1]
[ 0 0 1 0 1 0 1 0 1 1 0 1 1/2 1/2 -1/2 1/2 1/2 3/2 0 1]
[ 0 0 0 1 0 1 1 0 1 0 1 1 1/2 1/2 1/2 1/2 1/2 1/2 0 1]
[ 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 1 -1 1 -1 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 20 and dimension 2 over Rational Field
Basis matrix:
[ 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1]
[ 0 0 1 -1 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0]
Vector space of degree 20 and dimension 1 over Rational Field
Basis matrix:
[0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1]
True
False
False
False
Vector space of degree 9 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 1 0 0 0 0 5/2]
[ 0 0 1 1 0 0 0 0 5/2]
[ 0 0 0 0 1 0 0 0 -1]
[ 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 1 -1]
Vector space of degree 9 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 1 0 0 0 0 5/2]
[ 0 0 1 1 0 0 0 0 5/2]
[ 0 0 0 0 1 0 0 0 -1]
[ 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 1 -1]
Vector space of degree 9 and dimension 1 over Rational Field
Basis matrix:
[ 0 1 -1 0 0 0 0 0 0]
Vector space of degree 9 and dimension 1 over Rational Field
Basis matrix:
[ 0 1 -1 0 0 0 0 0 0]
True
False
False
False
Vector space of degree 32 and dimension 9 over Rational Field
Basis matrix:
[ 0 1 0 0 0 1 1 0 1 1 0 0 0 3/2 0 3/2 0 0 3/2 0 0 3/2 0 3/2 -1 1/2 3/2 1/2 0 0 0 2]
[ 0 0 1 0 1 0 1 1/2 1 1/2 0 0 0 3/2 0 3/2 1/2 1/2 2 -1/2 -1/2 1 0 3/2 -1 1/2 3/2 1/2 0 0 0 2]
[ 0 0 0 1 1 1 0 1/2 1 1/2 0 0 1 0 1 1 1/2 1/2 1/2 1/2 1/2 1/2 0 0 1 1 0 1 0 0 0 2]
[ 0 0 0 0 0 0 0 0 0 0 1 0 1 -1 0 -1 1 0 -1 1 1 0 0 -1 1 0 -1 0 0 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 1 -1 0 1 -1 0 -1 2 1 -2 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 0 0 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 32 and dimension 9 over Rational Field
Basis matrix:
[ 0 1 0 0 0 1 1 0 1 1 0 0 0 3/2 0 3/2 0 0 3/2 0 0 3/2 0 3/2 -1 1/2 3/2 1/2 0 0 0 2]
[ 0 0 1 0 1 0 1 1/2 1 1/2 0 0 0 3/2 0 3/2 -1/2 -1/2 1 1/2 1/2 2 0 3/2 -1 1/2 3/2 1/2 0 0 0 2]
[ 0 0 0 1 1 1 0 1/2 1 1/2 0 0 1 0 1 1 1/2 1/2 1/2 1/2 1/2 1/2 0 0 1 1 0 1 0 0 0 2]
[ 0 0 0 0 0 0 0 0 0 0 1 0 1 -1 0 -1 1 0 -1 1 0 -1 0 -1 2 1 -2 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 1 -1 0 1 -1 0 -2 2 0 -1 1 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 -1 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1]
Vector space of degree 32 and dimension 1 over Rational Field
Basis matrix:
[ 0 1 -1 1 0 2 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1]
Vector space of degree 32 and dimension 0 over Rational Field
Basis matrix:
[]
False
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
False
[12/7, 12/7, 12/7, 12/7, 12/7]
(0, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1)
(-1/2, -1/2, 0, -1/2, 0, 0, 1/2, 1, 1/2, 3/2)
True
[3/2, 3/2, 3/2, 3/2]
/ext/sage/10.6/local/var/lib/sage/venv-python3.12.5/lib/python3.12/site-packages/scikits/__init__.py:1: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
__import__("pkg_resources").declare_namespace(__name__)
/ext/sage/10.6/local/var/lib/sage/venv-python3.12.5/lib/python3.12/site-packages/scikits/__init__.py:1: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('scikits')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
__import__("pkg_resources").declare_namespace(__name__)
(0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1)
False
[4/3, 4/3, 4/3]
True
[3/4]
True
[3/2, 3/2, 3/2, 3/2]
False
[15/7, 15/7, 15/7, 15/7, 15/7, 15/7, 15/7, 15/7]
n=0
[]
n=1
[1]
n=2
[2]
[1, 1]
n=3
[3]
[1, 1, 1]
n=4
[4]
[2, 2]
[1, 1, 1, 1]
n=5
[5]
[1, 1, 1, 1, 1]
n=6
[6]
[3, 3]
[2, 2, 2]
[1, 1, 1, 1, 1, 1]
n=7
[7]
[1, 1, 1, 1, 1, 1, 1]
n=8
[8]
[4, 4]
[2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1]
n=9
[9]
[3, 3, 3]
[1, 1, 1, 1, 1, 1, 1, 1, 1]
n=10
[10]
[5, 5]
[2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=11
[11]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=12
[12]
[6, 6]
[4, 4, 4]
[3, 3, 3, 3]
[2, 2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=13
[13]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=14
[14]
[7, 7]
[2, 2, 2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=15
[15]
[5, 5, 5]
[3, 3, 3, 3, 3]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=16
[16]
[8, 8]
[4, 4, 4, 4]
[2, 2, 2, 2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=17
[17]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=18
[18]
[9, 9]
[6, 6, 6]
[3, 3, 3, 3, 3, 3]
[2, 2, 2, 2, 2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=19
[19]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=20
[20]
[10, 10]
[5, 5, 5, 5]
[4, 4, 4, 4, 4]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
n=0
[]
n=1
[1]
n=2
[2]
n=3
[3]
[2, 1]
n=4
[4]
n=5
[5]
n=6
[6]
[3, 2, 1]
n=7
[7]
n=8
[8]
n=9
[9]
n=10
[10]
[4, 3, 2, 1]
n=11
[11]
n=12
[12]
n=13
[13]
n=14
[14]
n=15
[15]
[5, 4, 3, 2, 1]
n=16
[16]
n=17
[17]
n=18
[18]
n=19
[19]
n=20
[20]
n=21
[21]
[6, 5, 4, 3, 2, 1]