Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<?xml version='1.0' encoding='UTF-8'?>
2
<bank xmlns="https://checkit.clontz.org" version="0.1">
3
<title>Differential Equations</title>
4
<url>https://github.com/StevenClontz/checkit-clontz-diff-eq</url>
5
<outcomes>
6
<outcome>
7
<title>Structure of an IVP and Verifying Solutions</title>
8
<slug>AA1</slug>
9
<description>
10
Identify the structure of an initial value problem and its solution.
11
</description>
12
<alignment>
13
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 1.1 and 1.2
14
</alignment>
15
</outcome>
16
<outcome>
17
<title>Direction Fields</title>
18
<slug>AA2</slug>
19
<description>
20
Use technology to generate a direction/slope field for a first-order ODE,
21
and interpret this field to approximate
22
the value of an IVP solution at a point.
23
</description>
24
<alignment>
25
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 1.3
26
</alignment>
27
</outcome>
28
<outcome>
29
<title>Euler's Method</title>
30
<slug>AA3</slug>
31
<description>
32
Implement Euler's Method for a first-order IVP to approximate
33
the value of an IVP solution at a point.
34
</description>
35
<alignment>
36
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 1.4
37
</alignment>
38
</outcome>
39
<outcome>
40
<title>Existence/uniqueness IVP Theorems</title>
41
<slug>AA4</slug>
42
<description>
43
Apply appropriate theorems to determine the largest possible domain for which an IVP
44
is guaranteed a unique solution.
45
</description>
46
<alignment>
47
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 1.2 and 6.1
48
</alignment>
49
</outcome>
50
<outcome>
51
<title>Constant-Coefficient Linear Homogeneous First-Order IVPs</title>
52
<slug>CC1</slug>
53
<description>
54
Find general and particular solutions for constant-coefficient linear homogeneous first-order IVPs.
55
</description>
56
<alignment>
57
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 4.2
58
</alignment>
59
</outcome>
60
<outcome>
61
<title>Constant-Coefficient Linear Non-Homogeneous First-Order IVPs</title>
62
<slug>CC2</slug>
63
<description>
64
Find particular solutions for constant-coefficient linear non-homogeneous first-order IVPs.
65
</description>
66
<alignment>
67
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 4.6 and 6.4
68
</alignment>
69
</outcome>
70
<outcome>
71
<title>Constant-Coefficient Linear Homogeneous Higher-Order ODEs</title>
72
<slug>CC3</slug>
73
<description>
74
Find general solutions for constant-coefficient linear homogeneous higher-order ODEs.
75
</description>
76
<alignment>
77
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 4.2 and 4.3
78
</alignment>
79
</outcome>
80
<outcome>
81
<title>Constant-Coefficient Linear Homogeneous Second-Order IVPs</title>
82
<slug>CC4</slug>
83
<description>
84
Find particular solutions for constant-coefficient linear homogeneous second-order ODEs.
85
</description>
86
<alignment>
87
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 4.2 and 4.3
88
</alignment>
89
</outcome>
90
<outcome>
91
<title>Constant-Coefficient Linear Non-Homogeneous Second-Order IVPs</title>
92
<slug>CC5</slug>
93
<description>
94
Find particular solutions for constant-coefficient linear homogeneous second-order ODEs.
95
</description>
96
<alignment>
97
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 4.4, 4.5, 6.2, and 6.3
98
</alignment>
99
</outcome>
100
<outcome>
101
<title>Autonomous Linear First-Order IVP Systems</title>
102
<slug>CC6</slug>
103
<description>
104
Find particular solutions for autonomous linear first-order IVP systems.
105
</description>
106
<alignment>
107
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 5.2 and 7.10
108
</alignment>
109
</outcome>
110
<outcome>
111
<title>Discontinuous Functions and Distributions</title>
112
<slug>DL1</slug>
113
<description>
114
Illustrate and compute integrals involving the unit step function and Dirac-delta distribution.
115
</description>
116
<alignment>
117
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 7.6 and 7.9
118
</alignment>
119
</outcome>
120
<outcome>
121
<title>Laplace Transforms from Definition and Formulas</title>
122
<slug>DL2</slug>
123
<description>
124
Use a table of transforms to find Laplace transformations, and verify a given Laplace transformation from
125
its integral definition.
126
</description>
127
<alignment>
128
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 7.2 and 7.3
129
</alignment>
130
</outcome>
131
<outcome>
132
<title>Inverse Laplace Transforms and Convolution</title>
133
<slug>DL3</slug>
134
<description>
135
Compute inverse Laplace transforms using the convolution theorem.
136
</description>
137
<alignment>
138
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 7.4 and 7.8
139
</alignment>
140
</outcome>
141
<outcome>
142
<title>Using Laplace Transforms to Solve IVPs</title>
143
<slug>DL4</slug>
144
<description>
145
Solve a second-order constant-coefficient linear IVP involving a discontinuous function by
146
applying Laplace transforms.
147
</description>
148
<alignment>
149
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 7.5
150
</alignment>
151
</outcome>
152
<outcome>
153
<title>Linear Homogeneous First-Order IVPs</title>
154
<slug>FO1</slug>
155
<description>
156
Find particular solutions for constant-coefficient linear homogeneous first-order IVPs.
157
</description>
158
<alignment>
159
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 2.2
160
</alignment>
161
</outcome>
162
<outcome>
163
<title>Linear Non-Homogeneous First-Order IVPs</title>
164
<slug>FO2</slug>
165
<description>
166
Find particular solutions for constant-coefficient linear non-homogeneous first-order IVPs.
167
</description>
168
<alignment>
169
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 2.3 and 4.6
170
</alignment>
171
</outcome>
172
<outcome>
173
<title>Substitution for First-Order IVPs</title>
174
<slug>FO3</slug>
175
<description>
176
Find particular solutions for constant-coefficient linear non-homogeneous first-order IVPs.
177
</description>
178
<alignment>
179
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 2.6
180
</alignment>
181
</outcome>
182
<outcome>
183
<title>Exact First-Order IVPs</title>
184
<slug>FO4</slug>
185
<description>
186
Identify exact ODEs, and find their implicit solutions.
187
</description>
188
<alignment>
189
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; 2.4
190
</alignment>
191
</outcome>
192
<outcome>
193
<title>Strategies for Solving IVPs</title>
194
<slug>AA5</slug>
195
<description>
196
Identify appropriate techniques for solving IVPs based on their structure.
197
</description>
198
<alignment>
199
Fundamentals of Differential Equations and Boundary Value Problems, 7th ed; various sections
200
</alignment>
201
</outcome>
202
<outcome>
203
<title>Wronskian</title>
204
<slug>Extra1</slug>
205
<description>
206
Use the Wronskian to prove linear independence of particular solutions.
207
</description>
208
<alignment>
209
</alignment>
210
</outcome>
211
</outcomes>
212
</bank>
213