ubuntu2004
<exercise checkit-seed="0001" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">1<statement>2<p>3For each of the following Initial Value Problems (IVPs), designate the following:4</p>5<ul>6<li>its Ordinary Differential Equation (ODE)</li>7<li>its Initial Value or Values (IVs)</li>8<li>the order of the IVP</li>9<li>its independent variable</li>10<li>its dependent variable</li>11<li>whether its solution is implicit or explicit</li>12</ul>13<p>14Then show how to verify that its solution is valid.15</p>16<ol>17<li>18<ul>19<li>IVP:20<m>218 \, y + 2 \, {\frac{dy}{dt}} - {\frac{d^2y}{dt^2}} = 0;\qquad22y(0)=231,24y'(0)=25426</m>27</li>28<li>Solution: <m>y = e^{\left(4 \, t\right)}</m></li>29</ul>30</li>31<li>32<ul>33<li>IVP:34<m>35-4 \, t {y'} + 2 \, y {y'} = 4 \, y;\qquad36y(1)=37-1 </m>38</li>39<li>Solution: <m>-4 \, t y + y^{2} = 5</m></li>40</ul>41</li>42<li>43<ul>44<li>IVP:45<m>46t {\frac{dx}{dt}} - 8 \, t = 3 \, x;\qquad47x(1)=48-1 </m>49</li>50<li>Solution: <m>x = 3 \, t^{3} - 4 \, t</m></li>51</ul>52</li>53</ol>54</statement>55<answer>56<ol>57<li>58<ul>59<li>ODE: <m>8 \, y + 2 \, {\frac{dy}{dt}} - {\frac{d^2y}{dt^2}} = 0</m></li>60<li>IV(s): <m>61y(0)=162,y'(0)=463</m></li>64<li>Order: 2nd</li>65<li>Independent variable: <m>t</m></li>66<li>Dependent variable: <m>y</m></li>67<li>The solution <m>y = e^{\left(4 \, t\right)}</m> is explicit.</li>68</ul>69</li>70<li>71<ul>72<li>ODE: <m>-4 \, t {y'} + 2 \, y {y'} = 4 \, y</m></li>73<li>IV(s): <m>74y(1)=-17576</m></li>77<li>Order: 1st</li>78<li>Independent variable: <m>t</m></li>79<li>Dependent variable: <m>y</m></li>80<li>The solution <m>-4 \, t y + y^{2} = 5</m> is implicit.</li>81</ul>82</li>83<li>84<ul>85<li>ODE: <m>t {\frac{dx}{dt}} - 8 \, t = 3 \, x</m></li>86<li>IV(s): <m>87x(1)=-18889</m></li>90<li>Order: 1st</li>91<li>Independent variable: <m>t</m></li>92<li>Dependent variable: <m>x</m></li>93<li>The solution <m>x = 3 \, t^{3} - 4 \, t</m> is explicit.</li>94</ul>95</li>96</ol>97</answer>98</exercise>99100101