Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<exercise checkit-seed="0003" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">
2
<statement>
3
<p>
4
For each of the following Initial Value Problems (IVPs), designate the following:
5
</p>
6
<ul>
7
<li>its Ordinary Differential Equation (ODE)</li>
8
<li>its Initial Value or Values (IVs)</li>
9
<li>the order of the IVP</li>
10
<li>its independent variable</li>
11
<li>its dependent variable</li>
12
<li>whether its solution is implicit or explicit</li>
13
</ul>
14
<p>
15
Then show how to verify that its solution is valid.
16
</p>
17
<ol>
18
<li>
19
<ul>
20
<li>IVP:
21
<m>
22
-t {x'} - x = 2 \, x {x'};\qquad
23
x(1)=
24
-1 </m>
25
</li>
26
<li>Solution: <m>t x + x^{2} = 0</m></li>
27
</ul>
28
</li>
29
<li>
30
<ul>
31
<li>IVP:
32
<m>
33
0 = 4 \, t^{2} - t {y'} + 4 \, y;\qquad
34
y(1)=
35
-1 </m>
36
</li>
37
<li>Solution: <m>y = t^{4} - 2 \, t^{2}</m></li>
38
</ul>
39
</li>
40
<li>
41
<ul>
42
<li>IVP:
43
<m>
44
-3 \, {y'} = -10 \, y + {y''};\qquad
45
y(0)=
46
-3,
47
y'(0)=
48
15
49
</m>
50
</li>
51
<li>Solution: <m>y = -3 \, e^{\left(-5 \, x\right)}</m></li>
52
</ul>
53
</li>
54
</ol>
55
</statement>
56
<answer>
57
<ol>
58
<li>
59
<ul>
60
<li>ODE: <m>-t {x'} - x = 2 \, x {x'}</m></li>
61
<li>IV(s): <m>
62
x(1)=-1
63
64
</m></li>
65
<li>Order: 1st</li>
66
<li>Independent variable: <m>t</m></li>
67
<li>Dependent variable: <m>x</m></li>
68
<li>The solution <m>t x + x^{2} = 0</m> is implicit.</li>
69
</ul>
70
</li>
71
<li>
72
<ul>
73
<li>ODE: <m>0 = 4 \, t^{2} - t {y'} + 4 \, y</m></li>
74
<li>IV(s): <m>
75
y(1)=-1
76
77
</m></li>
78
<li>Order: 1st</li>
79
<li>Independent variable: <m>t</m></li>
80
<li>Dependent variable: <m>y</m></li>
81
<li>The solution <m>y = t^{4} - 2 \, t^{2}</m> is explicit.</li>
82
</ul>
83
</li>
84
<li>
85
<ul>
86
<li>ODE: <m>-3 \, {y'} = -10 \, y + {y''}</m></li>
87
<li>IV(s): <m>
88
y(0)=-3
89
,y'(0)=15
90
</m></li>
91
<li>Order: 2nd</li>
92
<li>Independent variable: <m>x</m></li>
93
<li>Dependent variable: <m>y</m></li>
94
<li>The solution <m>y = -3 \, e^{\left(-5 \, x\right)}</m> is explicit.</li>
95
</ul>
96
</li>
97
</ol>
98
</answer>
99
</exercise>
100
101