Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<exercise checkit-seed="0005" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">
2
<statement>
3
<p>
4
For each of the following Initial Value Problems (IVPs), designate the following:
5
</p>
6
<ul>
7
<li>its Ordinary Differential Equation (ODE)</li>
8
<li>its Initial Value or Values (IVs)</li>
9
<li>the order of the IVP</li>
10
<li>its independent variable</li>
11
<li>its dependent variable</li>
12
<li>whether its solution is implicit or explicit</li>
13
</ul>
14
<p>
15
Then show how to verify that its solution is valid.
16
</p>
17
<ol>
18
<li>
19
<ul>
20
<li>IVP:
21
<m>
22
0 = -5 \, t {\frac{dx}{dt}} + 2 \, x {\frac{dx}{dt}} - 5 \, x;\qquad
23
x(-1)=
24
1 </m>
25
</li>
26
<li>Solution: <m>-5 \, t x + x^{2} = 6</m></li>
27
</ul>
28
</li>
29
<li>
30
<ul>
31
<li>IVP:
32
<m>
33
5 \, y = 4 \, {\frac{dy}{dt}} + {\frac{d^2y}{dt^2}};\qquad
34
y(0)=
35
5,
36
y'(0)=
37
5
38
</m>
39
</li>
40
<li>Solution: <m>y = 5 \, e^{t}</m></li>
41
</ul>
42
</li>
43
<li>
44
<ul>
45
<li>IVP:
46
<m>
47
8 \, t^{4} - t {x'} = -2 \, x;\qquad
48
x(-1)=
49
0 </m>
50
</li>
51
<li>Solution: <m>x = 4 \, t^{4} - 4 \, t^{2}</m></li>
52
</ul>
53
</li>
54
</ol>
55
</statement>
56
<answer>
57
<ol>
58
<li>
59
<ul>
60
<li>ODE: <m>0 = -5 \, t {\frac{dx}{dt}} + 2 \, x {\frac{dx}{dt}} - 5 \, x</m></li>
61
<li>IV(s): <m>
62
x(-1)=1
63
64
</m></li>
65
<li>Order: 1st</li>
66
<li>Independent variable: <m>t</m></li>
67
<li>Dependent variable: <m>x</m></li>
68
<li>The solution <m>-5 \, t x + x^{2} = 6</m> is implicit.</li>
69
</ul>
70
</li>
71
<li>
72
<ul>
73
<li>ODE: <m>5 \, y = 4 \, {\frac{dy}{dt}} + {\frac{d^2y}{dt^2}}</m></li>
74
<li>IV(s): <m>
75
y(0)=5
76
,y'(0)=5
77
</m></li>
78
<li>Order: 2nd</li>
79
<li>Independent variable: <m>t</m></li>
80
<li>Dependent variable: <m>y</m></li>
81
<li>The solution <m>y = 5 \, e^{t}</m> is explicit.</li>
82
</ul>
83
</li>
84
<li>
85
<ul>
86
<li>ODE: <m>8 \, t^{4} - t {x'} = -2 \, x</m></li>
87
<li>IV(s): <m>
88
x(-1)=0
89
90
</m></li>
91
<li>Order: 1st</li>
92
<li>Independent variable: <m>t</m></li>
93
<li>Dependent variable: <m>x</m></li>
94
<li>The solution <m>x = 4 \, t^{4} - 4 \, t^{2}</m> is explicit.</li>
95
</ul>
96
</li>
97
</ol>
98
</answer>
99
</exercise>
100
101