ubuntu2004
<exercise checkit-seed="0006" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">1<statement>2<p>3For each of the following Initial Value Problems (IVPs), designate the following:4</p>5<ul>6<li>its Ordinary Differential Equation (ODE)</li>7<li>its Initial Value or Values (IVs)</li>8<li>the order of the IVP</li>9<li>its independent variable</li>10<li>its dependent variable</li>11<li>whether its solution is implicit or explicit</li>12</ul>13<p>14Then show how to verify that its solution is valid.15</p>16<ol>17<li>18<ul>19<li>IVP:20<m>213 \, x^{3} = x {y'} - 2 \, y;\qquad22y(1)=235 </m>24</li>25<li>Solution: <m>y = 3 \, x^{3} + 2 \, x^{2}</m></li>26</ul>27</li>28<li>29<ul>30<li>IVP:31<m>32x - {\frac{d^2x}{dt^2}} = 0;\qquad33x(0)=34-2,35x'(0)=36237</m>38</li>39<li>Solution: <m>x = -2 \, e^{\left(-t\right)}</m></li>40</ul>41</li>42<li>43<ul>44<li>IVP:45<m>463 \, y^{2} {y'} - 2 \, t {y'} = 2 \, y;\qquad47y(-1)=481 </m>49</li>50<li>Solution: <m>y^{3} - 2 \, t y = 3</m></li>51</ul>52</li>53</ol>54</statement>55<answer>56<ol>57<li>58<ul>59<li>ODE: <m>3 \, x^{3} = x {y'} - 2 \, y</m></li>60<li>IV(s): <m>61y(1)=56263</m></li>64<li>Order: 1st</li>65<li>Independent variable: <m>x</m></li>66<li>Dependent variable: <m>y</m></li>67<li>The solution <m>y = 3 \, x^{3} + 2 \, x^{2}</m> is explicit.</li>68</ul>69</li>70<li>71<ul>72<li>ODE: <m>x - {\frac{d^2x}{dt^2}} = 0</m></li>73<li>IV(s): <m>74x(0)=-275,x'(0)=276</m></li>77<li>Order: 2nd</li>78<li>Independent variable: <m>t</m></li>79<li>Dependent variable: <m>x</m></li>80<li>The solution <m>x = -2 \, e^{\left(-t\right)}</m> is explicit.</li>81</ul>82</li>83<li>84<ul>85<li>ODE: <m>3 \, y^{2} {y'} - 2 \, t {y'} = 2 \, y</m></li>86<li>IV(s): <m>87y(-1)=18889</m></li>90<li>Order: 1st</li>91<li>Independent variable: <m>t</m></li>92<li>Dependent variable: <m>y</m></li>93<li>The solution <m>y^{3} - 2 \, t y = 3</m> is implicit.</li>94</ul>95</li>96</ol>97</answer>98</exercise>99100101