ubuntu2004
<exercise checkit-seed="0007" checkit-slug="AA4" checkit-title="Existence/uniqueness IVP Theorems">1<statement>2<p>3Explain how to use an appropriate Existence and Uniqueness Theorem to determine4the largest possible domain guaranteed for a unique solution to each IVP.5</p>6<ol>7<li>8<m>90 = -{\left(2 \, {y} + t + 9\right)}^{7} - {\left({y'} - 5\right)}^{5};\qquad10{y}(-2)=-3111213</m>14</li>15<li>16<m>17{\left(t + 4\right)} {\left(t + 1\right)} y + 4 \, {y''} + e^{t} = -{\left(t - 6\right)} {y'''} e^{t};\qquad18y(3)=819,y'(3)=620,y''(3)=221</m>22</li>23</ol>24</statement>25<answer>26<ol>27<li>28By the First Order ODE Existence and Uniqueness Theorem, the IVP has29a unique solution defined for all real numbers.30</li>31<li>32By the Linear ODE Existence and Uniqueness Theorem, the IVP has33a unique solution defined on the interval <m>(-\infty,6)</m>.34</li>35</ol>36</answer>37</exercise>383940