Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<exercise checkit-seed="0007" checkit-slug="AA4" checkit-title="Existence/uniqueness IVP Theorems">
2
<statement>
3
<p>
4
Explain how to use an appropriate Existence and Uniqueness Theorem to determine
5
the largest possible domain guaranteed for a unique solution to each IVP.
6
</p>
7
<ol>
8
<li>
9
<m>
10
0 = -{\left(2 \, {y} + t + 9\right)}^{7} - {\left({y'} - 5\right)}^{5};\qquad
11
{y}(-2)=-3
12
13
14
</m>
15
</li>
16
<li>
17
<m>
18
{\left(t + 4\right)} {\left(t + 1\right)} y + 4 \, {y''} + e^{t} = -{\left(t - 6\right)} {y'''} e^{t};\qquad
19
y(3)=8
20
,y'(3)=6
21
,y''(3)=2
22
</m>
23
</li>
24
</ol>
25
</statement>
26
<answer>
27
<ol>
28
<li>
29
By the First Order ODE Existence and Uniqueness Theorem, the IVP has
30
a unique solution defined for all real numbers.
31
</li>
32
<li>
33
By the Linear ODE Existence and Uniqueness Theorem, the IVP has
34
a unique solution defined on the interval <m>(-\infty,6)</m>.
35
</li>
36
</ol>
37
</answer>
38
</exercise>
39
40