ubuntu2004
<exercise checkit-seed="0009" checkit-slug="AA4" checkit-title="Existence/uniqueness IVP Theorems">1<statement>2<p>3Explain how to use an appropriate Existence and Uniqueness Theorem to determine4the largest possible domain guaranteed for a unique solution to each IVP.5</p>6<ol>7<li>8<m>9{\left({y'} - 4\right)}^{5} + {\left(3 \, {y} + t - 5\right)}^{2} = 0;\qquad10{y}(-2)=4111213</m>14</li>15<li>16<m>17-e^{\left(5 \, t\right)} = {\left(t + 5\right)} {\left(t + 1\right)} y + {\left(t - 6\right)} {y'''} e^{t} - 5 \, {y''};\qquad18y(7)=419,y'(7)=320,y''(7)=421</m>22</li>23</ol>24</statement>25<answer>26<ol>27<li>28By the First Order ODE Existence and Uniqueness Theorem, the IVP has29a unique solution defined nearby the initial value.30</li>31<li>32By the Linear ODE Existence and Uniqueness Theorem, the IVP has33a unique solution defined on the interval <m>(6,+\infty)</m>.34</li>35</ol>36</answer>37</exercise>383940