<?xml version='1.0' encoding='UTF-8'?>
<exercise xmlns="https://spatext.clontz.org" version="0.0">
<statement>
<p>
Explain how to use an appropriate Existence and Uniqueness Theorem to determine
the largest possible domain guaranteed for a unique solution to each IVP.
</p>
<ol>
{{#ivps}}
<li>
<m>
{{ode}};\qquad
{{y}}({{t0}})={{y0}}
{{#yp0}},{{y}}'({{t0}})={{yp0}}{{/yp0}}
{{#ypp0}},{{y}}''({{t0}})={{ypp0}}{{/ypp0}}
</m>
</li>
{{/ivps}}
</ol>
</statement>
<answer>
<ol>
{{#ivps}}
<li>
{{#interval}}
By the Linear ODE Existence and Uniqueness Theorem, the IVP has
a unique solution defined on the interval <m>{{interval}}</m>.
{{/interval}}
{{#domain}}
By the First Order ODE Existence and Uniqueness Theorem, the IVP has
a unique solution defined {{domain}}.
{{/domain}}
</li>
{{/ivps}}
</ol>
</answer>
</exercise>