Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<?xml version='1.0' encoding='UTF-8'?>
2
<bank xmlns="https://checkit.clontz.org" version="0.1">
3
<title>Linear Algebra for Team-Based Inquiry Learning</title>
4
<url>https://teambasedinquirylearning.github.io/linear-algebra/</url>
5
<outcomes>
6
<outcome>
7
<title>Linear systems, vector equations, and augmented matrices</title>
8
<slug>E1</slug>
9
<description>
10
Translate back and forth between a system of linear equations, a vector equation, and the corresponding augmented matrix.
11
</description>
12
<alignment>
13
</alignment>
14
</outcome>
15
<outcome>
16
<title>Reduced row echelon form</title>
17
<slug>E2</slug>
18
<description>
19
Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced row echelon form.
20
</description>
21
<alignment>
22
</alignment>
23
</outcome>
24
<outcome>
25
<title>Solving linear systems</title>
26
<slug>E3</slug>
27
<description>
28
Compute the solution set for a system of linear equations or a vector equation.
29
</description>
30
<alignment>
31
</alignment>
32
</outcome>
33
<outcome>
34
<title>Vector spaces</title>
35
<slug>V1</slug>
36
<description>
37
Explain why a given set with defined addition and scalar multiplication does satisfy a given vector space property, but nonetheless isn't a vector space.
38
</description>
39
<alignment>
40
</alignment>
41
</outcome>
42
<outcome>
43
<title>Linear combinations</title>
44
<slug>V2</slug>
45
<description>
46
Determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors by solving an appropriate vector equation.
47
</description>
48
<alignment>
49
</alignment>
50
</outcome>
51
<outcome>
52
<title>Spanning sets</title>
53
<slug>V3</slug>
54
<description>
55
Determine if a set of Euclidean vectors spans R^n by solving appropriate vector equations.
56
</description>
57
<alignment>
58
</alignment>
59
</outcome>
60
<outcome>
61
<title>Subspaces</title>
62
<slug>V4</slug>
63
<description>
64
Determine if a subset of R^n is a subspace or not.
65
</description>
66
<alignment>
67
</alignment>
68
</outcome>
69
<outcome>
70
<title>Linear independence</title>
71
<slug>V5</slug>
72
<description>
73
Determine if a set of Euclidean vectors is linearly dependent or independent by solving an appropriate vector equation.
74
</description>
75
<alignment>
76
</alignment>
77
</outcome>
78
<outcome>
79
<title>Basis identification</title>
80
<slug>V6</slug>
81
<description>
82
Explain why a set of Euclidean vectors is or is not a basis of R^n.
83
</description>
84
<alignment>
85
</alignment>
86
</outcome>
87
<outcome>
88
<title>Basis of a subspace</title>
89
<slug>V7</slug>
90
<description>
91
Compute a basis for the subspace spanned by a given set of Euclidean vectors, and determine the dimension of the subspace.
92
</description>
93
<alignment>
94
</alignment>
95
</outcome>
96
<outcome>
97
<title>Polynomial and matrix spaces</title>
98
<slug>V8</slug>
99
<description>
100
Answer questions about vector spaces of polynomials or matrices.
101
</description>
102
<alignment>
103
</alignment>
104
</outcome>
105
<outcome>
106
<title>Homogeneous systems</title>
107
<slug>V9</slug>
108
<description>
109
Find a basis for the solution set of a homogeneous system of equations.
110
</description>
111
<alignment>
112
</alignment>
113
</outcome>
114
<outcome>
115
<title>Linear maps</title>
116
<slug>A1</slug>
117
<description>
118
Determine if a map between vector spaces of polynomials is linear or not.
119
</description>
120
<alignment>
121
</alignment>
122
</outcome>
123
<outcome>
124
<title>Standard matrices</title>
125
<slug>A2</slug>
126
<description>
127
Translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
128
</description>
129
<alignment>
130
</alignment>
131
</outcome>
132
<outcome>
133
<title>Image and kernel</title>
134
<slug>A3</slug>
135
<description>
136
Compute a basis for the kernel and a basis for the image of a linear map, and verify that the rank-nullity theorem holds for a given linear map.
137
</description>
138
<alignment>
139
</alignment>
140
</outcome>
141
<outcome>
142
<title>Injectivity and surjectivity</title>
143
<slug>A4</slug>
144
<description>
145
Determine if a given linear map is injective and/or surjective.
146
</description>
147
<alignment>
148
</alignment>
149
</outcome>
150
<outcome>
151
<title>Multiplying matrices</title>
152
<slug>M1</slug>
153
<description>
154
Multiply matrices.
155
</description>
156
<alignment>
157
</alignment>
158
</outcome>
159
<outcome>
160
<title>Row operations as matrix multiplication</title>
161
<slug>M2</slug>
162
<description>
163
Express row operations through matrix multiplication.
164
</description>
165
<alignment>
166
</alignment>
167
</outcome>
168
<outcome>
169
<title>Invertible matrices</title>
170
<slug>M3</slug>
171
<description>
172
Determine if a square matrix is invertible or not.
173
</description>
174
<alignment>
175
</alignment>
176
</outcome>
177
<outcome>
178
<title>Finding a matrix inverse</title>
179
<slug>M4</slug>
180
<description>
181
Compute the inverse matrix of an invertible matrix.
182
</description>
183
<alignment>
184
</alignment>
185
</outcome>
186
<outcome>
187
<title>Row operations and determinants</title>
188
<slug>G1</slug>
189
<description>
190
Describe how a row operation affects the determinant of a matrix.
191
</description>
192
<alignment>
193
</alignment>
194
</outcome>
195
<outcome>
196
<title>Determinants</title>
197
<slug>G2</slug>
198
<description>
199
Compute the determinant of a 4x4 matrix.
200
</description>
201
<alignment>
202
</alignment>
203
</outcome>
204
<outcome>
205
<title>Eigenvalues</title>
206
<slug>G3</slug>
207
<description>
208
Find the eigenvalues of a 2x2 matrix.
209
</description>
210
<alignment>
211
</alignment>
212
</outcome>
213
<outcome>
214
<title>Eigenvectors</title>
215
<slug>G4</slug>
216
<description>
217
Find a basis for the eigenspace of a 4x4 matrix associated
218
with a given eigenvalue.
219
</description>
220
<alignment>
221
</alignment>
222
</outcome>
223
</outcomes>
224
</bank>
225