ubuntu2004
<exercise checkit-seed="0001" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^5 \to \mathbb{R}^3</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{ccccc}51 & 3 & 0 & 2 & -7 \\63 & 9 & -2 & -5 & -1 \\70 & 0 & 1 & 5 & -98\end{array}\right]</m>.9</p>10<ol>11<li><p>Explain why <m>T</m> is or is not injective.</p></li>12<li><p>Explain why <m>T</m> is or is not surjective.</p></li>13</ol>14</statement>15<answer>16<p><me>\operatorname{RREF}\left[\begin{array}{ccccc}171 & 3 & 0 & 2 & -7 \\183 & 9 & -2 & -5 & -1 \\190 & 0 & 1 & 5 & -920\end{array}\right]=\left[\begin{array}{ccccc}211 & 3 & 0 & 0 & -3 \\220 & 0 & 1 & 0 & 1 \\230 & 0 & 0 & 1 & -224\end{array}\right]</me></p>25<ol>26<li>27<p><m>T</m> is not injective.</p>28</li>29<li>30<p><m>T</m> is surjective.</p>31</li>32</ol>33</answer>34</exercise>353637