ubuntu2004
<exercise checkit-seed="0003" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^4 \to \mathbb{R}^5</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{cccc}51 & 0 & -2 & 3 \\60 & 1 & 4 & -1 \\70 & 0 & 1 & 0 \\80 & -1 & -5 & 1 \\92 & 2 & -3 & 410\end{array}\right]</m>.11</p>12<ol>13<li><p>Explain why <m>T</m> is or is not injective.</p></li>14<li><p>Explain why <m>T</m> is or is not surjective.</p></li>15</ol>16</statement>17<answer>18<p><me>\operatorname{RREF}\left[\begin{array}{cccc}191 & 0 & -2 & 3 \\200 & 1 & 4 & -1 \\210 & 0 & 1 & 0 \\220 & -1 & -5 & 1 \\232 & 2 & -3 & 424\end{array}\right]=\left[\begin{array}{cccc}251 & 0 & 0 & 3 \\260 & 1 & 0 & -1 \\270 & 0 & 1 & 0 \\280 & 0 & 0 & 0 \\290 & 0 & 0 & 030\end{array}\right]</me></p>31<ol>32<li>33<p><m>T</m> is not injective.</p>34</li>35<li>36<p><m>T</m> is not surjective.</p>37</li>38</ol>39</answer>40</exercise>414243