Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<exercise checkit-seed="0003" checkit-slug="A4" checkit-title="Injectivity and surjectivity">
2
<statement>
3
<p>
4
Let <m>T:\mathbb{R}^4 \to \mathbb{R}^5</m> be the linear transformation given by the standard matrix
5
<m>\left[\begin{array}{cccc}
6
1 &amp; 0 &amp; -2 &amp; 3 \\
7
0 &amp; 1 &amp; 4 &amp; -1 \\
8
0 &amp; 0 &amp; 1 &amp; 0 \\
9
0 &amp; -1 &amp; -5 &amp; 1 \\
10
2 &amp; 2 &amp; -3 &amp; 4
11
\end{array}\right]</m>.
12
</p>
13
<ol>
14
<li><p>Explain why <m>T</m> is or is not injective.</p></li>
15
<li><p>Explain why <m>T</m> is or is not surjective.</p></li>
16
</ol>
17
</statement>
18
<answer>
19
<p><me>\operatorname{RREF}\left[\begin{array}{cccc}
20
1 &amp; 0 &amp; -2 &amp; 3 \\
21
0 &amp; 1 &amp; 4 &amp; -1 \\
22
0 &amp; 0 &amp; 1 &amp; 0 \\
23
0 &amp; -1 &amp; -5 &amp; 1 \\
24
2 &amp; 2 &amp; -3 &amp; 4
25
\end{array}\right]=\left[\begin{array}{cccc}
26
1 &amp; 0 &amp; 0 &amp; 3 \\
27
0 &amp; 1 &amp; 0 &amp; -1 \\
28
0 &amp; 0 &amp; 1 &amp; 0 \\
29
0 &amp; 0 &amp; 0 &amp; 0 \\
30
0 &amp; 0 &amp; 0 &amp; 0
31
\end{array}\right]</me></p>
32
<ol>
33
<li>
34
<p><m>T</m> is not injective.</p>
35
</li>
36
<li>
37
<p><m>T</m> is not surjective.</p>
38
</li>
39
</ol>
40
</answer>
41
</exercise>
42
43