Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<?xml version='1.0' encoding='UTF-8'?>
2
<exercise xmlns="https://spatext.clontz.org" version="0.0">
3
<statement>
4
<p>
5
Let <m>T:\mathbb{R}^{{columns}} \to \mathbb{R}^{{rows}}</m>
6
be the linear transformation given by
7
<me>T\left( {{varvector}} \right) = {{Tvar}}.</me>
8
</p>
9
<ol>
10
<li>Explain how to find the image of <m>T</m> and the kernel of <m>T</m>.</li>
11
<li>Explain how to find a basis of the image of <m>T</m> and a basis of the kernel of <m>T</m>.</li>
12
<li>Explain how to find the rank and nullity of <m>T</m>, and why the rank-nullity theorem holds for <m>T</m>.</li>
13
</ol>
14
</statement>
15
<answer>
16
<p><me>\operatorname{RREF}{{matrix}}={{rref}}</me></p>
17
<ol>
18
<li>
19
<p>
20
<m>\operatorname{Im}\ T = {{image}}</m> and
21
<m>\operatorname{ker}\ T = {{kernel}}</m>
22
</p>
23
</li>
24
<li>
25
<p>
26
A basis of <m>\operatorname{Im}\ T</m> is <m>{{image_basis}}</m>.
27
A basis of <m>\operatorname{ker}\ T</m> is <m>{{kernel_basis}}</m>.
28
</p>
29
</li>
30
<li>
31
<p>
32
The rank of <m>T</m> is <m>{{rank}}</m>, the nullity of <m>T</m> is <m>{{nullity}}</m>,
33
and the dimension of the domain of <m>T</m> is <m>{{columns}}</m>. The rank-nullity theorem asserts that
34
<m>{{rank}}+{{nullity}}={{columns}}</m>, which we see to be true.
35
</p>
36
</li>
37
</ol>
38
</answer>
39
</exercise>
40