<?xml version='1.0' encoding='UTF-8'?>
<exercise xmlns="https://spatext.clontz.org" version="0.0">
<statement>
<p>Consider the following statement.</p>
<ul><li> The set of
{{#context_pol}}
polynomials <m>{{set}}</m>
{{#task_ind}}is linearly independent.{{/task_ind}}
{{#task_spa}}spans <m>\mathcal{P}_3</m>.{{/task_spa}}
{{/context_pol}}
{{#context_mat}}
matrices <m>{{set}}</m>
{{#task_ind}}is linearly independent.{{/task_ind}}
{{#task_spa}}spans <m>\mathrm{M}_{2,2}</m>.{{/task_spa}}
{{/context_mat}}
</li></ul>
<ol>
<li> Write an equivalent statement using a {{#context_pol}}polynomial{{/context_pol}}{{#context_mat}}matrix{{/context_mat}} equation.</li>
<li> Explain why your statement is true or false.</li>
</ol>
</statement>
<answer>
<p><me>\operatorname{RREF}{{matrix}}={{rref}}</me></p>
<ol>
<li>
{{#task_ind}}
The {{#context_pol}}polynomial{{/context_pol}}{{#context_mat}}matrix{{/context_mat}} equation
<me>{{equation}}</me>
has no nontrivial solutions.
{{/task_ind}}
{{#task_spa}}
{{#context_pol}}
The polynomial equation <me>{{equation}}=f</me> has a solution for every <m>f \in \mathcal{P}_3</m>.
{{/context_pol}}
{{#context_mat}}
The matrix equation <me>{{equation}}=B</me> has a solution for every <m>B \in \mathrm{M}_{2,2}</m>.
{{/context_mat}}
{{/task_spa}}
</li>
<li>
The set of {{#context_pol}}polynomials{{/context_pol}}{{#context_mat}}matrices{{/context_mat}} <m>{{set}}</m>
{{#task_ind}}
is linearly {{#result}}in{{/result}}dependent.
{{/task_ind}}
{{#task_spa}}
{{#result}}
spans
{{/result}}
{{^result}}
does not span
{{/result}}
{{#context_pol}}
<m>\mathcal{P}_3</m>.
{{/context_pol}}
{{#context_mat}}
<m>\mathrm{M}_{2,2}</m>.
{{/context_mat}}
{{/task_spa}}
</li>
</ol>
</answer>
</exercise>