#include "mupdf/fitz.h"
#define MAX4(a,b,c,d) fz_max(fz_max(a,b), fz_max(c,d))
#define MIN4(a,b,c,d) fz_min(fz_min(a,b), fz_min(c,d))
#define ADD_WITH_SAT(b,a,x) \
((b) = (a) + (x), (b) = (((~(a)^(x))&((a)^(b))) < 0 ? ((x) < 0 ? INT_MIN : INT_MAX) : (b)))
const fz_matrix fz_identity = { 1, 0, 0, 1, 0, 0 };
fz_matrix *
fz_concat(fz_matrix *dst, const fz_matrix *one, const fz_matrix *two)
{
fz_matrix dst2;
dst2.a = one->a * two->a + one->b * two->c;
dst2.b = one->a * two->b + one->b * two->d;
dst2.c = one->c * two->a + one->d * two->c;
dst2.d = one->c * two->b + one->d * two->d;
dst2.e = one->e * two->a + one->f * two->c + two->e;
dst2.f = one->e * two->b + one->f * two->d + two->f;
*dst = dst2;
return dst;
}
fz_matrix *
fz_scale(fz_matrix *m, float sx, float sy)
{
m->a = sx; m->b = 0;
m->c = 0; m->d = sy;
m->e = 0; m->f = 0;
return m;
}
fz_matrix *
fz_pre_scale(fz_matrix *mat, float sx, float sy)
{
mat->a *= sx;
mat->b *= sx;
mat->c *= sy;
mat->d *= sy;
return mat;
}
fz_matrix *
fz_shear(fz_matrix *mat, float h, float v)
{
mat->a = 1; mat->b = v;
mat->c = h; mat->d = 1;
mat->e = 0; mat->f = 0;
return mat;
}
fz_matrix *
fz_pre_shear(fz_matrix *mat, float h, float v)
{
float a = mat->a;
float b = mat->b;
mat->a += v * mat->c;
mat->b += v * mat->d;
mat->c += h * a;
mat->d += h * b;
return mat;
}
fz_matrix *
fz_rotate(fz_matrix *m, float theta)
{
float s;
float c;
while (theta < 0)
theta += 360;
while (theta >= 360)
theta -= 360;
if (fabsf(0 - theta) < FLT_EPSILON)
{
s = 0;
c = 1;
}
else if (fabsf(90.0f - theta) < FLT_EPSILON)
{
s = 1;
c = 0;
}
else if (fabsf(180.0f - theta) < FLT_EPSILON)
{
s = 0;
c = -1;
}
else if (fabsf(270.0f - theta) < FLT_EPSILON)
{
s = -1;
c = 0;
}
else
{
s = sinf(theta * (float)M_PI / 180);
c = cosf(theta * (float)M_PI / 180);
}
m->a = c; m->b = s;
m->c = -s; m->d = c;
m->e = 0; m->f = 0;
return m;
}
fz_matrix *
fz_pre_rotate(fz_matrix *m, float theta)
{
while (theta < 0)
theta += 360;
while (theta >= 360)
theta -= 360;
if (fabsf(0 - theta) < FLT_EPSILON)
{
}
else if (fabsf(90.0f - theta) < FLT_EPSILON)
{
float a = m->a;
float b = m->b;
m->a = m->c;
m->b = m->d;
m->c = -a;
m->d = -b;
}
else if (fabsf(180.0f - theta) < FLT_EPSILON)
{
m->a = -m->a;
m->b = -m->b;
m->c = -m->c;
m->d = -m->d;
}
else if (fabsf(270.0f - theta) < FLT_EPSILON)
{
float a = m->a;
float b = m->b;
m->a = -m->c;
m->b = -m->d;
m->c = a;
m->d = b;
}
else
{
float s = sinf(theta * (float)M_PI / 180);
float c = cosf(theta * (float)M_PI / 180);
float a = m->a;
float b = m->b;
m->a = c * a + s * m->c;
m->b = c * b + s * m->d;
m->c =-s * a + c * m->c;
m->d =-s * b + c * m->d;
}
return m;
}
fz_matrix *
fz_translate(fz_matrix *m, float tx, float ty)
{
m->a = 1; m->b = 0;
m->c = 0; m->d = 1;
m->e = tx; m->f = ty;
return m;
}
fz_matrix *
fz_pre_translate(fz_matrix *mat, float tx, float ty)
{
mat->e += tx * mat->a + ty * mat->c;
mat->f += tx * mat->b + ty * mat->d;
return mat;
}
fz_matrix *
fz_invert_matrix(fz_matrix *dst, const fz_matrix *src)
{
float a = src->a;
float det = a * src->d - src->b * src->c;
if (det < -FLT_EPSILON || det > FLT_EPSILON)
{
float rdet = 1 / det;
dst->a = src->d * rdet;
dst->b = -src->b * rdet;
dst->c = -src->c * rdet;
dst->d = a * rdet;
a = -src->e * dst->a - src->f * dst->c;
dst->f = -src->e * dst->b - src->f * dst->d;
dst->e = a;
}
else
*dst = *src;
return dst;
}
int
fz_try_invert_matrix(fz_matrix *dst, const fz_matrix *src)
{
double sa = (double)src->a;
double sb = (double)src->b;
double sc = (double)src->c;
double sd = (double)src->d;
double da, db, dc, dd;
double det = sa * sd - sb * sc;
if (det >= -DBL_EPSILON && det <= DBL_EPSILON)
return 1;
det = 1 / det;
da = sd * det;
dst->a = (float)da;
db = -sb * det;
dst->b = (float)db;
dc = -sc * det;
dst->c = (float)dc;
dd = sa * det;
dst->d = (float)dd;
da = -src->e * da - src->f * dc;
dst->f = (float)(-src->e * db - src->f * dd);
dst->e = (float)da;
return 0;
}
int
fz_is_rectilinear(const fz_matrix *m)
{
return (fabsf(m->b) < FLT_EPSILON && fabsf(m->c) < FLT_EPSILON) ||
(fabsf(m->a) < FLT_EPSILON && fabsf(m->d) < FLT_EPSILON);
}
float
fz_matrix_expansion(const fz_matrix *m)
{
return sqrtf(fabsf(m->a * m->d - m->b * m->c));
}
float
fz_matrix_max_expansion(const fz_matrix *m)
{
float max = fabsf(m->a);
float x = fabsf(m->b);
if (max < x)
max = x;
x = fabsf(m->c);
if (max < x)
max = x;
x = fabsf(m->d);
if (max < x)
max = x;
return max;
}
fz_point *
fz_transform_point(fz_point *restrict p, const fz_matrix *restrict m)
{
float x = p->x;
p->x = x * m->a + p->y * m->c + m->e;
p->y = x * m->b + p->y * m->d + m->f;
return p;
}
fz_point *
fz_transform_point_xy(fz_point *restrict p, const fz_matrix *restrict m, float x, float y)
{
p->x = x * m->a + y * m->c + m->e;
p->y = x * m->b + y * m->d + m->f;
return p;
}
fz_point *
fz_transform_vector(fz_point *restrict p, const fz_matrix *restrict m)
{
float x = p->x;
p->x = x * m->a + p->y * m->c;
p->y = x * m->b + p->y * m->d;
return p;
}
void
fz_normalize_vector(fz_point *p)
{
float len = p->x * p->x + p->y * p->y;
if (len != 0)
{
len = sqrtf(len);
p->x /= len;
p->y /= len;
}
}
#define MAX_SAFE_INT 16777216
#define MIN_SAFE_INT -16777216
const fz_rect fz_infinite_rect = { 1, 1, -1, -1 };
const fz_rect fz_empty_rect = { 0, 0, 0, 0 };
const fz_rect fz_unit_rect = { 0, 0, 1, 1 };
const fz_irect fz_infinite_irect = { 1, 1, -1, -1 };
const fz_irect fz_empty_irect = { 0, 0, 0, 0 };
const fz_irect fz_unit_bbox = { 0, 0, 1, 1 };
fz_irect *
fz_irect_from_rect(fz_irect *restrict b, const fz_rect *restrict r)
{
if (fz_is_empty_rect(r))
{
b->x0 = 0;
b->y0 = 0;
b->x1 = 0;
b->y1 = 0;
}
else
{
b->x0 = fz_clamp(floorf(r->x0), MIN_SAFE_INT, MAX_SAFE_INT);
b->y0 = fz_clamp(floorf(r->y0), MIN_SAFE_INT, MAX_SAFE_INT);
b->x1 = fz_clamp(ceilf(r->x1), MIN_SAFE_INT, MAX_SAFE_INT);
b->y1 = fz_clamp(ceilf(r->y1), MIN_SAFE_INT, MAX_SAFE_INT);
}
return b;
}
fz_rect *
fz_rect_from_irect(fz_rect *restrict r, const fz_irect *restrict a)
{
r->x0 = a->x0;
r->y0 = a->y0;
r->x1 = a->x1;
r->y1 = a->y1;
return r;
}
fz_irect *
fz_round_rect(fz_irect * restrict b, const fz_rect *restrict r)
{
int i;
i = floorf(r->x0 + 0.001);
b->x0 = fz_clamp(i, MIN_SAFE_INT, MAX_SAFE_INT);
i = floorf(r->y0 + 0.001);
b->y0 = fz_clamp(i, MIN_SAFE_INT, MAX_SAFE_INT);
i = ceilf(r->x1 - 0.001);
b->x1 = fz_clamp(i, MIN_SAFE_INT, MAX_SAFE_INT);
i = ceilf(r->y1 - 0.001);
b->y1 = fz_clamp(i, MIN_SAFE_INT, MAX_SAFE_INT);
return b;
}
fz_rect *
fz_intersect_rect(fz_rect *restrict a, const fz_rect *restrict b)
{
if (fz_is_empty_rect(a)) return a;
if (fz_is_empty_rect(b)) {
*a = fz_empty_rect;
return a;
}
if (fz_is_infinite_rect(b)) return a;
if (fz_is_infinite_rect(a)) {
*a = *b;
return a;
}
if (a->x0 < b->x0)
a->x0 = b->x0;
if (a->y0 < b->y0)
a->y0 = b->y0;
if (a->x1 > b->x1)
a->x1 = b->x1;
if (a->y1 > b->y1)
a->y1 = b->y1;
if (a->x1 < a->x0 || a->y1 < a->y0)
*a = fz_empty_rect;
return a;
}
fz_irect *
fz_intersect_irect(fz_irect *restrict a, const fz_irect *restrict b)
{
if (fz_is_empty_irect(a)) return a;
if (fz_is_empty_irect(b))
{
*a = fz_empty_irect;
return a;
}
if (fz_is_infinite_irect(b)) return a;
if (fz_is_infinite_irect(a))
{
*a = *b;
return a;
}
if (a->x0 < b->x0)
a->x0 = b->x0;
if (a->y0 < b->y0)
a->y0 = b->y0;
if (a->x1 > b->x1)
a->x1 = b->x1;
if (a->y1 > b->y1)
a->y1 = b->y1;
if (a->x1 < a->x0 || a->y1 < a->y0)
*a = fz_empty_irect;
return a;
}
fz_rect *
fz_union_rect(fz_rect *restrict a, const fz_rect *restrict b)
{
if (fz_is_empty_rect(b)) return a;
if (fz_is_empty_rect(a)) {
*a = *b;
return a;
}
if (fz_is_infinite_rect(a)) return a;
if (fz_is_infinite_rect(b)) {
*a = *b;
return a;
}
if (a->x0 > b->x0)
a->x0 = b->x0;
if (a->y0 > b->y0)
a->y0 = b->y0;
if (a->x1 < b->x1)
a->x1 = b->x1;
if (a->y1 < b->y1)
a->y1 = b->y1;
return a;
}
fz_irect *
fz_translate_irect(fz_irect *a, int xoff, int yoff)
{
int t;
if (fz_is_empty_irect(a)) return a;
if (fz_is_infinite_irect(a)) return a;
a->x0 = ADD_WITH_SAT(t, a->x0, xoff);
a->y0 = ADD_WITH_SAT(t, a->y0, yoff);
a->x1 = ADD_WITH_SAT(t, a->x1, xoff);
a->y1 = ADD_WITH_SAT(t, a->y1, yoff);
return a;
}
fz_rect *
fz_transform_rect(fz_rect *restrict r, const fz_matrix *restrict m)
{
fz_point s, t, u, v;
if (fz_is_infinite_rect(r))
return r;
if (fabsf(m->b) < FLT_EPSILON && fabsf(m->c) < FLT_EPSILON)
{
if (m->a < 0)
{
float f = r->x0;
r->x0 = r->x1;
r->x1 = f;
}
if (m->d < 0)
{
float f = r->y0;
r->y0 = r->y1;
r->y1 = f;
}
fz_transform_point(fz_rect_min(r), m);
fz_transform_point(fz_rect_max(r), m);
return r;
}
s.x = r->x0; s.y = r->y0;
t.x = r->x0; t.y = r->y1;
u.x = r->x1; u.y = r->y1;
v.x = r->x1; v.y = r->y0;
fz_transform_point(&s, m);
fz_transform_point(&t, m);
fz_transform_point(&u, m);
fz_transform_point(&v, m);
r->x0 = MIN4(s.x, t.x, u.x, v.x);
r->y0 = MIN4(s.y, t.y, u.y, v.y);
r->x1 = MAX4(s.x, t.x, u.x, v.x);
r->y1 = MAX4(s.y, t.y, u.y, v.y);
return r;
}
fz_rect *
fz_expand_rect(fz_rect *a, float expand)
{
if (fz_is_empty_rect(a)) return a;
if (fz_is_infinite_rect(a)) return a;
a->x0 -= expand;
a->y0 -= expand;
a->x1 += expand;
a->y1 += expand;
return a;
}
fz_rect *fz_include_point_in_rect(fz_rect *r, const fz_point *p)
{
if (p->x < r->x0) r->x0 = p->x;
if (p->x > r->x1) r->x1 = p->x;
if (p->y < r->y0) r->y0 = p->y;
if (p->y > r->y1) r->y1 = p->y;
return r;
}