Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

William Stein -- Talk for Mathematics is a long conversation: a celebration of Barry Mazur

3999 views
\relax 
\providecommand\hyper@newdestlabel[2]{}
\bibstyle{amsplain}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax 
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\newlabel{preface}{{}{5}{Preface}{chapter*.2}{}}
\@writefile{toc}{\contentsline {chapter}{Preface}{5}{chapter*.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Peter Sarnak}}{6}{figure.0.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Raoul Bott (1923--2005). Photograph by George M. Bergman, Courtesy of the Department of Mathematics, Harvard University.}}{7}{figure.0.2}}
\newlabel{fig:bott}{{2}{7}{Raoul Bott (1923--2005). Photograph by George M. Bergman, Courtesy of the Department of Mathematics, Harvard University}{figure.0.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Don Zagier}}{8}{figure.0.3}}
\@writefile{toc}{\contentsline {part}{I\hspace  {1em}The Riemann Hypothesis{}}{11}{part.1}}
\newlabel{part1}{{I}{11}{The \RH {}}{part.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Thoughts about numbers}{12}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Ren\'e Descartes (1596--1650)}}{12}{figure.1.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Jean de Bosschere, ``Don Quixote and his Dulcinea del Toboso,'' from The History of Don Quixote De La Mancha, by Miguel De Cervantes. Trans. Thomas Shelton. George H. Doran Company, New York (1923).}}{13}{figure.1.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Cicadas emerge every 17 years}}{14}{figure.1.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Euclid}}{14}{figure.1.4}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}What are prime numbers?}{15}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:what_are_primes}{{2}{15}{What are prime numbers?}{chapter.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The number $6 = 2\times 3$}}{15}{figure.2.1}}
\citation{Note01}
\citation{Note02}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Factor trees that illustrate the factorization of 300 as a product of primes.}}{16}{figure.2.2}}
\newlabel{fig:factor300}{{2.2}{16}{Factor trees that illustrate the factorization of 300 as a product of primes}{figure.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Factorization tree for the product of the primes up to $29$.}}{16}{figure.2.3}}
\newlabel{factor.tree.big}{{2.3}{16}{Factorization tree for the product of the primes up to $29$}{figure.2.3}{}}
\citation{Note03}
\newlabel{sumdigits}{{2}{19}{What are prime numbers?}{figure.2.3}{}}
\citation{Note04}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}``Named'' prime numbers}{20}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:namedprimes}{{3}{20}{``Named'' prime numbers}{chapter.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Sieves}{22}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:sieves}{{4}{22}{Sieves}{chapter.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Using the prime 2 to sieve for primes up to 100}}{23}{figure.4.1}}
\newlabel{fig:erat2}{{4.1}{23}{Using the prime 2 to sieve for primes up to 100}{figure.4.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Using the primes 2 and 3 to sieve for primes up to 100}}{23}{figure.4.2}}
\newlabel{fig:erat23}{{4.2}{23}{Using the primes 2 and 3 to sieve for primes up to 100}{figure.4.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Using the primes 2, 3, and 5 to sieve for primes up to 100}}{23}{figure.4.3}}
\newlabel{fig:erat235}{{4.3}{23}{Using the primes 2, 3, and 5 to sieve for primes up to 100}{figure.4.3}{}}
\citation{Note05}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Using the primes 2, 3, 5, and 7 to sieve for primes up to 100}}{24}{figure.4.4}}
\newlabel{fig:erat2357}{{4.4}{24}{Using the primes 2, 3, 5, and 7 to sieve for primes up to 100}{figure.4.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Questions about primes}{25}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:questions}{{5}{25}{Questions about primes}{chapter.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Yitang Zhang}}{26}{figure.5.1}}
\newlabel{fig:zhang}{{5.1}{26}{Yitang\index {Zhang, Yitang} Zhang}{figure.5.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Marin Mersenne (1588--1648)}}{26}{figure.5.2}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Further questions about primes}{28}{chapter.6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:further}{{6}{28}{Further questions about primes}{chapter.6}{}}
\@writefile{lot}{\contentsline {table}{\numberline {6.1}{\ignorespaces Values of $\Gap  _{k}(X)$ }}{29}{table.6.1}}
\newlabel{tab:gap}{{6.1}{29}{Values of $\Gap _{k}(X)$}{table.6.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Frequency histogram showing the distribution of prime gaps of size $\leq 50$ for all primes up to $10^7$. Six is the most popular gap in this data. }}{29}{figure.6.1}}
\newlabel{fig:primegapdist}{{6.1}{29}{Frequency histogram showing the distribution\index {distribution} of prime gaps of size $\leq 50$ for all primes up to $10^7$. Six is the most popular gap in this data}{figure.6.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces Plots of $\Gap  _k(X)$ for $k=2,4,6,8$. Which wins?}}{29}{figure.6.2}}
\citation{Note06}
\@writefile{lot}{\contentsline {table}{\numberline {6.2}{\ignorespaces Count of multiplicatively odd and even positive numbers $\le X$}}{30}{table.6.2}}
\newlabel{tab:evenodddata}{{6.2}{30}{Count of multiplicatively odd and even positive numbers $\le X$}{table.6.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces Racing Multiplicatively Even and Odd Numbers.}}{31}{figure.6.3}}
\newlabel{fig:liouville}{{6.3}{31}{Racing Multiplicatively Even and Odd Numbers}{figure.6.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}How many primes are there?}{32}{chapter.7}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Sieving primes up to 200}}{32}{figure.7.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Graph of the proportion of primes up to $X$ for each integer $X\leq 100$}}{33}{figure.7.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.3}{\ignorespaces Proportion of primes for $X$ up to $1{,}000$}}{33}{figure.7.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.4}{\ignorespaces Proportion of primes for $X$ up to $10{,}000$}}{34}{figure.7.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.5}{\ignorespaces Sieving by removing multiples of $2$ up to $100$}}{35}{figure.7.5}}
\newlabel{fig:sieve_2_100}{{7.5}{35}{Sieving by removing multiples of $2$ up to $100$}{figure.7.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.6}{\ignorespaces Sieving for primes up to $1000$}}{35}{figure.7.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.7}{\ignorespaces Sieving out multiples of $2$ and $3$.}}{35}{figure.7.7}}
\newlabel{fig:sieve3_100}{{7.7}{35}{Sieving out multiples of $2$ and $3$}{figure.7.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.8}{\ignorespaces Sieving out multiples of $2$, $3$, $5$, and $7$.}}{36}{figure.7.8}}
\newlabel{fig:sieve7_100}{{7.8}{36}{Sieving out multiples of $2$, $3$, $5$, and $7$}{figure.7.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.9}{\ignorespaces Staircase of primes up to 25}}{36}{figure.7.9}}
\newlabel{fig:staircase25}{{7.9}{36}{Staircase of primes up to 25}{figure.7.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.10}{\ignorespaces Staircase of primes up to 100}}{36}{figure.7.10}}
\newlabel{fig:staircase100a}{{7.10}{36}{Staircase of primes up to 100}{figure.7.10}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Prime numbers viewed from a distance}{37}{chapter.8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces Staircases of primes up to 1,000}}{37}{figure.8.1}}
\newlabel{fig:staircases2}{{8.1}{37}{Staircases of primes up to 1,000}{figure.8.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces Staircases of primes up to 10{,}000}}{38}{figure.8.2}}
\newlabel{fig:staircases2b}{{8.2}{38}{Staircases of primes up to 10{,}000}{figure.8.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.3}{\ignorespaces Primes up to 100{,}000.}}{38}{figure.8.3}}
\newlabel{fig:pn100000}{{8.3}{38}{Primes up to 100{,}000}{figure.8.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Pure and applied mathematics}{39}{chapter.9}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:pureapplied}{{9}{39}{Pure and applied mathematics}{chapter.9}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}A probabilistic first guess }{41}{chapter.10}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:firstguess}{{10}{41}{A probabilistic first guess}{chapter.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.1}{\ignorespaces Gauss}}{41}{figure.10.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.2}{\ignorespaces Plot of $\pi (X)$ and Gauss's smooth curve $G(X)$}}{41}{figure.10.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.3}{\ignorespaces Plot of the natural logarithm $\qopname  \relax o{log}(X)$}}{42}{figure.10.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.4}{\ignorespaces A slide rule computes $2X$ by using that $\qopname  \relax o{log}(2X)=\qopname  \relax o{log}(2)+\qopname  \relax o{log}(X)$}}{43}{figure.10.4}}
\newlabel{fig:slide_rule}{{10.4}{43}{A slide rule computes $2X$ by using that $\log (2X)=\log (2)+\log (X)$}{figure.10.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.5}{\ignorespaces A Letter of Gauss}}{43}{figure.10.5}}
\newlabel{fig:gauss_letter}{{10.5}{43}{A Letter of Gauss}{figure.10.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10.6}{\ignorespaces The expected tally of the number of primes $\leq X$ is approximated by the area underneath the graph of $1/\qopname  \relax o{log}(X)$ from $1$ to $X$.}}{44}{figure.10.6}}
\newlabel{fig:G}{{10.6}{44}{The expected tally of the number of primes $\leq X$ is approximated by the area underneath the graph of $1/\log (X)$ from $1$ to $X$}{figure.10.6}{}}
\citation{Note07}
\@writefile{toc}{\contentsline {chapter}{\numberline {11}What is a ``good approximation''?}{45}{chapter.11}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:sqrterror}{{11}{45}{What is a ``good approximation''?}{chapter.11}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {12}Square root error and random walks}{47}{chapter.12}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {12.1}{\ignorespaces Three Random Walks}}{48}{figure.12.1}}
\newlabel{fig:random_walks_3}{{12.1}{48}{Three Random Walk\index {random walk}s}{figure.12.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {12.2}{\ignorespaces Ten Random Walks}}{48}{figure.12.2}}
\newlabel{fig:random_walks_10}{{12.2}{48}{Ten Random Walk\index {random walk}s}{figure.12.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {12.3}{\ignorespaces One Hundred Random Walks}}{48}{figure.12.3}}
\newlabel{fig:random_walks_100}{{12.3}{48}{One Hundred Random Walk\index {random walk}s}{figure.12.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {12.4}{\ignorespaces One Thousand Random Walks}}{48}{figure.12.4}}
\newlabel{fig:random_walks_1000}{{12.4}{48}{One Thousand Random Walk\index {random walk}s}{figure.12.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {13}What is Riemann's Hypothesis?}{49}{chapter.13}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:rh1}{{13}{49}{What is Riemann's Hypothesis?}{chapter.13}{}}
\citation{Note08}
\citation{Note09}
\@writefile{lof}{\contentsline {figure}{\numberline {13.1}{\ignorespaces Plots of $\Li  (X)$ (top), $\pi (X)$ (in the middle), and $X/\qopname  \relax o{log}(X)$ (bottom).}}{50}{figure.13.1}}
\newlabel{fig:threeplots}{{13.1}{50}{Plots of $\Li (X)$ (top), $\pi (X)$ (in the middle), and $X/\log (X)$ (bottom)}{figure.13.1}{}}
\newlabel{pili_vals}{{13}{50}{What is Riemann's Hypothesis?}{figure.13.1}{}}
\newlabel{rh:first}{{13}{50}{What is Riemann's Hypothesis?}{figure.13.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {14}The mystery moves to the error term}{51}{chapter.14}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {chapter}{\numberline {15}Ces\`aro smoothing}{52}{chapter.15}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ces}{{15}{52}{Ces\`aro smoothing\index {Ces\`aro Smoothing}}{chapter.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {15.1}{\ignorespaces The ``Average Vehicle Speed,'' as displayed on the dashboard of the 2013 Camaro SS car that one of us drove during the writing of this chapter.}}{52}{figure.15.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {15.2}{\ignorespaces The red plot is the Ces\`aro smoothing of the blue plot}}{53}{figure.15.2}}
\newlabel{fig:cesaro-smoothing}{{15.2}{53}{The red plot is the Ces\`aro smoothing\index {Ces\`aro Smoothing} of the blue plot}{figure.15.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {16} A view of $|\Li  (X) - \pi (X)|$}{54}{chapter.16}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {16.1}{\ignorespaces $\Li  (X)-\pi (X)$ (blue middle), its Ces\`aro smoothing (red bottom), and $\sqrt  {\frac  {2}{\pi }}\cdot \sqrt  {X/\qopname  \relax o{log}(X)}$ (top), all for $X\leq 250{,}000$}}{54}{figure.16.1}}
\newlabel{fig:li-minus-pi-250000}{{16.1}{54}{$\Li (X)-\pi (X)$ (blue middle), its Ces\`aro smoothing\index {Ces\`aro Smoothing} (red bottom), and $\sqrt {\frac {2}{\pi }}\cdot \sqrt {X/\log (X)}$ (top), all for $X\leq 250{,}000$}{figure.16.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {16.2}{\ignorespaces John Edensor Littlewood (1885--1977)}}{55}{figure.16.2}}
\newlabel{fig:littlewood}{{16.2}{55}{John\index {Littlewood, John Edensor } Edensor Littlewood (1885--1977)}{figure.16.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {17}The Prime Number Theorem}{56}{chapter.17}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:pnt}{{17}{56}{The Prime Number Theorem}{chapter.17}{}}
\citation{Note10}
\@writefile{lof}{\contentsline {figure}{\numberline {17.1}{\ignorespaces The polynomials $A(X)=2 X^{2} + 3 X - 5$ (bottom) and $B(X)= 3 X^{2} - 2 X + 1$ (top) go to infinity at similar rates.}}{57}{figure.17.1}}
\newlabel{fig:simrates}{{17.1}{57}{The polynomials $A(X)=2 X^{2} + 3 X - 5$ (bottom) and $B(X)= 3 X^{2} - 2 X + 1$ (top) go to infinity at similar rates}{figure.17.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {17.2}{\ignorespaces The polynomials $A(X)=X^{2} + 3 X - 5$ (top) and $B(X)= X^{2} - 2 X + 1$ (bottom) go to infinity at the same rate.}}{57}{figure.17.2}}
\newlabel{fig:samerate}{{17.2}{57}{The polynomials $A(X)=X^{2} + 3 X - 5$ (top) and $B(X)= X^{2} - 2 X + 1$ (bottom) go to infinity at the same rate}{figure.17.2}{}}
\newlabel{page:leftmost}{{17}{57}{The Prime Number Theorem}{figure.17.2}{}}
\citation{Note11}
\@writefile{lof}{\contentsline {figure}{\numberline {17.3}{\ignorespaces From a manuscript of Riemann's 1859 paper written by a contem- porary of Riemann (possibly the mathematician Alfred Clebsch). }}{58}{figure.17.3}}
\newlabel{fig:riemamn}{{17.3}{58}{From a manuscript of Riemann's 1859 paper written by a contem- porary of Riemann (possibly the mathematician Alfred Clebsch)}{figure.17.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {17.4}{\ignorespaces Bernhard Riemann (1826--1866)}}{59}{figure.17.4}}
\@writefile{toc}{\contentsline {chapter}{\numberline {18}The staircase of primes}{60}{chapter.18}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:information}{{18}{60}{The staircase of primes}{chapter.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {18.1}{\ignorespaces The Staircase of Primes}}{61}{figure.18.1}}
\newlabel{fig:staircases}{{18.1}{61}{The Staircase of Primes}{figure.18.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {19}Tinkering with the staircase of primes}{62}{chapter.19}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:tinkering}{{19}{62}{Tinkering with the staircase of primes}{chapter.19}{}}
\citation{Note12}
\@writefile{lof}{\contentsline {figure}{\numberline {19.1}{\ignorespaces The newly constructed staircase that counts prime powers}}{63}{figure.19.1}}
\newlabel{fig:psi}{{19.1}{63}{The newly constructed staircase that counts prime powers}{figure.19.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {19.2}{\ignorespaces The newly constructed staircase is close to the 45 degree line.}}{64}{figure.19.2}}
\newlabel{fig:psi_diag_1000}{{19.2}{64}{The newly constructed staircase is close to the 45 degree line}{figure.19.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {20}Computer music files and prime numbers}{65}{chapter.20}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:fourier1}{{20}{65}{Computer music files and prime numbers}{chapter.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.1}{\ignorespaces Graph of a sine wave}}{65}{figure.20.1}}
\newlabel{fig:sine}{{20.1}{65}{Graph of a sine wave}{figure.20.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.2}{\ignorespaces Graph of two sine waves with different frequencies}}{66}{figure.20.2}}
\newlabel{fig:sinetwofreq}{{20.2}{66}{Graph of two sine waves with different frequencies}{figure.20.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.3}{\ignorespaces Graph of sum of the two sine waves with different frequencies}}{66}{figure.20.3}}
\newlabel{fig:sinetwofreqsum}{{20.3}{66}{Graph of sum of the two sine waves with different frequencies}{figure.20.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.4}{\ignorespaces Graph of two ``sine'' waves with different phases.}}{67}{figure.20.4}}
\newlabel{fig:sin-twofreq-phase}{{20.4}{67}{Graph of two ``sine'' waves with different phases}{figure.20.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.5}{\ignorespaces Graph of the sum of the two ``sine'' waves with different frequencies and phases.}}{67}{figure.20.5}}
\newlabel{fig:sum-sin-phase}{{20.5}{67}{Graph of the sum of the two ``sine'' waves with different frequencies and phases}{figure.20.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.6}{\ignorespaces Graph of sampling of a sound wave}}{67}{figure.20.6}}
\newlabel{fig:sum-sin-phase-sample}{{20.6}{67}{Graph of sampling of a sound wave}{figure.20.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.7}{\ignorespaces Graph obtained from Figure\nobreakspace  {}\ref  {fig:sum-sin-phase-sample} by filling in the rest of the points}}{68}{figure.20.7}}
\newlabel{fig:sum-sin-phase-sample-fill}{{20.7}{68}{Graph obtained from Figure~\ref {fig:sum-sin-phase-sample} by filling in the rest of the points}{figure.20.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.8}{\ignorespaces Jean Baptiste Joseph Fourier (1768--1830)}}{68}{figure.20.8}}
\citation{Note13}
\@writefile{lof}{\contentsline {figure}{\numberline {20.9}{\ignorespaces Spectral picture of a CE chord}}{69}{figure.20.9}}
\newlabel{fig:ce-spectral}{{20.9}{69}{Spectral picture of a CE chord}{figure.20.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.10}{\ignorespaces Graph of sawtooth wave}}{69}{figure.20.10}}
\newlabel{fig:sawtooth}{{20.10}{69}{Graph of sawtooth wave}{figure.20.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.11}{\ignorespaces The Spectrum of the sawtooth wave has a spike of height $1/k$ at each integer $k$}}{70}{figure.20.11}}
\newlabel{fig:sawtooth-spectrum}{{20.11}{70}{The Spectrum\index {spectrum} of the sawtooth wave has a spike of height $1/k$ at each integer $k$}{figure.20.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {20.12}{\ignorespaces A Complicated sound wave}}{70}{figure.20.12}}
\newlabel{fig:complicated-wave}{{20.12}{70}{A Complicated sound wave}{figure.20.12}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {21}The word ``Spectrum"}{71}{chapter.21}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {chapter}{\numberline {22}Spectra and trigonometric sums }{73}{chapter.22}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:trigsums}{{22}{73}{Spectra and trigonometric sums}{chapter.22}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {22.1}{\ignorespaces Plot of the periodic sine wave $f(t) = 2\cdot \qopname  \relax o{cos}(1+t/2)$}}{73}{figure.22.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {22.2}{\ignorespaces Plot of the sum $5 \qopname  \relax o{cos}\left (-t - 2\right ) + 2 \qopname  \relax o{cos}\left (t/2 + 1\right ) + 3 \qopname  \relax o{cos}\left (2 t + 4\right )$}}{74}{figure.22.2}}
\newlabel{fig:mixed_tone3}{{22.2}{74}{Plot of the sum $5 \cos \left (-t - 2\right ) + 2 \cos \left (t/2 + 1\right ) + 3 \cos \left (2 t + 4\right )$}{figure.22.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {23}The spectrum and the staircase of primes}{75}{chapter.23}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:fourier_staircase}{{23}{75}{The spectrum and the staircase of primes}{chapter.23}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {23.1}{\ignorespaces The Staircase of primes}}{75}{figure.23.1}}
\newlabel{fig:staircase100}{{23.1}{75}{The Staircase of primes}{figure.23.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {24}To our readers of Part\nobreakspace  {}\ref  {part1}}{77}{chapter.24}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {part}{II\hspace  {1em}Distributions}{78}{part.2}}
\newlabel{part2}{{II}{78}{Distribution\index {distribution}s}{part.2}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {25}Slopes of graphs that have no slopes}{79}{chapter.25}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:calculusmanages}{{25}{79}{Slopes of graphs that have no slopes}{chapter.25}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.1}{\ignorespaces Isaac Newton and Gottfried Leibniz created calculus}}{79}{figure.25.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.2}{\ignorespaces Graph of the function $f(a)=a+1$}}{80}{figure.25.2}}
\newlabel{fig:graph_aplusone}{{25.2}{80}{Graph of the function $f(a)=a+1$}{figure.25.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.3}{\ignorespaces Calculus}}{80}{figure.25.3}}
\newlabel{fig:graph_slope_deriv}{{25.3}{80}{Calculus\index {calculus}}{figure.25.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.4}{\ignorespaces The graph of the function $f(x)$ above that jumps---it is $1$ up to $3$ and then $2$ after that point.}}{81}{figure.25.4}}
\newlabel{fig:jump}{{25.4}{81}{The graph of the function $f(x)$ above that jumps---it is $1$ up to $3$ and then $2$ after that point}{figure.25.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.5}{\ignorespaces A picture of a smooth graph approximating the graph that is $1$ up to some point $x$ and then $2$ after that point, the smooth graph being flat mostly.}}{81}{figure.25.5}}
\newlabel{fig:jumpsmooth}{{25.5}{81}{A picture of a smooth graph approximating the graph that is $1$ up to some point $x$ and then $2$ after that point, the smooth graph being flat mostly}{figure.25.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.6}{\ignorespaces A picture of the derivative of a smooth approximation to a function that jumps.}}{82}{figure.25.6}}
\newlabel{fig:djump1}{{25.6}{82}{A picture of the derivative of a smooth approximation to a function that jumps}{figure.25.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.7}{\ignorespaces Second picture of the derivative of a smooth approximation to a function that jumps.}}{82}{figure.25.7}}
\newlabel{fig:djump2}{{25.7}{82}{Second picture of the derivative of a smooth approximation to a function that jumps}{figure.25.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.8}{\ignorespaces Third picture of the derivative of a smooth approximation to a function that jumps.}}{82}{figure.25.8}}
\newlabel{fig:djump3}{{25.8}{82}{Third picture of the derivative of a smooth approximation to a function that jumps}{figure.25.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.9}{\ignorespaces Fourth picture of the derivative of a smooth approximation to a function that jumps.}}{83}{figure.25.9}}
\newlabel{fig:djump4}{{25.9}{83}{Fourth picture of the derivative of a smooth approximation to a function that jumps}{figure.25.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25.10}{\ignorespaces Karl Weierstrass (1815--1897) and Laurent Schwartz (1915--2002)}}{84}{figure.25.10}}
\citation{Note14}
\citation{Note15}
\@writefile{toc}{\contentsline {chapter}{\numberline {26}Distributions}{86}{chapter.26}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:dist}{{26}{86}{Distributions}{chapter.26}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {26.1}{\ignorespaces Paul Adrien Maurice Dirac (1902--1984)}}{87}{figure.26.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {26.2}{\ignorespaces This figure illustrates $\DOTSI \intop \ilimits@ _{-\infty }^{\infty } f(x) dx$, which is the signed area between the graph of $f(x)$ and the $x$-axis, where area below the $x$-axis (yellow) counts negative, and area above (grey) is positive.}}{87}{figure.26.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {26.3}{\ignorespaces The Dirac $\delta $-``function'' (actually distribution), where we draw a vertical arrow to illustrate the delta function with support at a given point.}}{89}{figure.26.3}}
\citation{Note16}
\@writefile{lof}{\contentsline {figure}{\numberline {26.4}{\ignorespaces The staircase function that is $0$ for $t \le 0$, $1$ for $0 <t \le 1$ and $3$ for $1< t \le 2$ has derivative $\delta _0 + 2\delta _1$.}}{91}{figure.26.4}}
\newlabel{fig:simple_staircase}{{26.4}{91}{The staircase function that is $0$ for $t \le 0$, $1$ for $0 <t \le 1$ and $3$ for $1< t \le 2$ has derivative $\delta _0 + 2\delta _1$}{figure.26.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {27}Fourier transforms: second visit}{92}{chapter.27}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {27.1}{\ignorespaces The graph of an even function is symmetrical about the $y$-axis.}}{92}{figure.27.1}}
\newlabel{fig:even_function}{{27.1}{92}{The graph of an even function is symmetrical about the $y$-axis}{figure.27.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {27.2}{\ignorespaces Even extension of the staircase of primes.}}{93}{figure.27.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {27.3}{\ignorespaces The Fourier transform machine, which transforms $f(t)$ into ${\mathaccentV {hat}05Ef}(\theta )$}}{93}{figure.27.3}}
\newlabel{fig:fourier_machine}{{27.3}{93}{The Fourier transform machine, which transforms $f(t)$ into ${\hat f}(\theta )$}{figure.27.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {28}Fourier transform of delta}{95}{chapter.28}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:ftdelta}{{28}{95}{Fourier transform of delta}{chapter.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {28.1}{\ignorespaces The sum $(\delta _x(t) + \delta _{-x}(t))/2$, where we draw vertical arrows to illustrate the Dirac delta functions.}}{96}{figure.28.1}}
\newlabel{fig:two_delta}{{28.1}{96}{The sum $(\delta _x(t) + \delta _{-x}(t))/2$, where we draw vertical arrows to illustrate the Dirac delta functions}{figure.28.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {29}Trigonometric series}{97}{chapter.29}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:trigseries}{{29}{97}{Trigonometric series}{chapter.29}{}}
\newlabel{dx2}{{29}{97}{Trigonometric series}{chapter.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {29.1}{\ignorespaces The sum $(\delta _x(t) + \delta _{-x}(t))/2$, where we draw vertical arrows to illustrate the Dirac delta functions.}}{98}{figure.29.1}}
\@writefile{toc}{\contentsline {chapter}{\numberline {30}A sneak preview of Part\nobreakspace  {}III}{99}{chapter.30}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{snpr}{{30}{99}{A sneak preview of Part~III}{chapter.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30.1}{\ignorespaces Plot of $f(t)$}}{100}{figure.30.1}}
\newlabel{fig:mini_phihat_even}{{30.1}{100}{Plot of $f(t)$}{figure.30.1}{}}
\citation{Note17}
\@writefile{lof}{\contentsline {figure}{\numberline {30.2}{\ignorespaces Plot of $-\DOTSB \sum@ \slimits@ _{p^n\leq 5}{\frac  {\qopname  \relax o{log}(p)}{p^{n/2}}}\qopname  \relax o{cos}(t\qopname  \relax o{log}(p^n))$ with arrows pointing to the spectrum of the primes}}{101}{figure.30.2}}
\newlabel{fig:pnsum5}{{30.2}{101}{Plot of $-\sum _{p^n\leq 5}{\frac {\log (p)}{p^{n/2}}}\cos (t\log (p^n))$ with arrows pointing to the spectrum\index {spectrum} of the primes}{figure.30.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30.3}{\ignorespaces Plot of $-\DOTSB \sum@ \slimits@ _{p^n\leq 20}{\frac  {\qopname  \relax o{log}(p)}{p^{n/2}}}\qopname  \relax o{cos}(t\qopname  \relax o{log}(p^n))$ with arrows pointing to the spectrum of the primes}}{102}{figure.30.3}}
\newlabel{phihat_even-20}{{30.3}{102}{Plot of $-\sum _{p^n\leq 20}{\frac {\log (p)}{p^{n/2}}}\cos (t\log (p^n))$ with arrows pointing to the spectrum\index {spectrum} of the primes}{figure.30.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30.4}{\ignorespaces Plot of $-\DOTSB \sum@ \slimits@ _{p^n\leq 50}{\frac  {\qopname  \relax o{log}(p)}{p^{n/2}}}\qopname  \relax o{cos}(t\qopname  \relax o{log}(p^n))$ with arrows pointing to the spectrum of the primes}}{102}{figure.30.4}}
\newlabel{fig:phihat_even-50}{{30.4}{102}{Plot of $-\sum _{p^n\leq 50}{\frac {\log (p)}{p^{n/2}}}\cos (t\log (p^n))$ with arrows pointing to the spectrum\index {spectrum} of the primes}{figure.30.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30.5}{\ignorespaces Plot of $-\DOTSB \sum@ \slimits@ _{p^n\leq 500}{\frac  {\qopname  \relax o{log}(p)}{p^{n/2}}}\qopname  \relax o{cos}(t\qopname  \relax o{log}(p^n))$ with arrows pointing to the spectrum of the primes}}{103}{figure.30.5}}
\newlabel{fig:pnsum500}{{30.5}{103}{Plot of $-\sum _{p^n\leq 500}{\frac {\log (p)}{p^{n/2}}}\cos (t\log (p^n))$ with arrows pointing to the spectrum\index {spectrum} of the primes}{figure.30.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30.6}{\ignorespaces Illustration of $-\DOTSB \sum@ \slimits@ _{i=1}^{1000} \qopname  \relax o{cos}(\qopname  \relax o{log}(s)\theta _i)$, where $\theta _1 \sim 14.13, \ldots  $ are the first $1000$ contributions to the spectrum. The red dots are at the prime powers $p^n$, whose size is proportional to $\qopname  \relax o{log}(p)$.}}{104}{figure.30.6}}
\newlabel{fig:phihat}{{30.6}{104}{Illustration of $-\sum _{i=1}^{1000} \cos (\log (s)\theta _i)$, where $\theta _1 \sim 14.13, \ldots $ are the first $1000$ contributions to the spectrum\index {spectrum}. The red dots are at the prime powers $p^n$, whose size is proportional to $\log (p)$}{figure.30.6}{}}
\@writefile{toc}{\contentsline {part}{III\hspace  {1em}The Riemann Spectrum of the Prime Numbers}{105}{part.3}}
\newlabel{part3}{{III}{105}{The Riemann Spectrum of the Prime Numbers}{part.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {31}On losing no information}{106}{chapter.31}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:loseno}{{31}{106}{On losing no information}{chapter.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {31.1}{\ignorespaces Prime numbers up to $37$}}{106}{figure.31.1}}
\citation{Note18}
\@writefile{lof}{\contentsline {figure}{\numberline {31.2}{\ignorespaces Prime numbers up to $37$}}{107}{figure.31.2}}
\@writefile{toc}{\contentsline {chapter}{\numberline {32}From primes to the Riemann spectrum}{109}{chapter.32}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:prime-to-spectrum}{{32}{109}{From primes to the Riemann spectrum}{chapter.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.1}{\ignorespaces $\Phi (t)$ is a sum of Dirac delta functions at the logarithms of prime powers $p^n$ weighted by $p^{-n/2}\qopname  \relax o{log}(p)$ (and $\qopname  \relax o{log}(2\pi )$ at $0$).}}{110}{figure.32.1}}
\newlabel{fig:bigPhi}{{32.1}{110}{$\Phi (t)$ is a sum of Dirac delta functions at the logarithms of prime powers $p^n$ weighted by $p^{-n/2}\log (p)$ (and $\log (2\pi )$ at $0$)}{figure.32.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.2}{\ignorespaces Plot of ${\mathaccentV {hat}05E\Phi }_{\leq 3}(\theta )$}}{111}{figure.32.2}}
\newlabel{fig:theta3}{{32.2}{111}{Plot of ${\hat \Phi }_{\leq 3}(\theta )$}{figure.32.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.3}{\ignorespaces Plot of ${\mathaccentV {hat}05E\Phi }_{\leq 3}(\theta )$ in blue and its derivative in grey}}{111}{figure.32.3}}
\newlabel{fig:theta4}{{32.3}{111}{Plot of ${\hat \Phi }_{\leq 3}(\theta )$ in blue and its derivative in grey}{figure.32.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.4}{\ignorespaces ${\mathaccentV {hat}05E\Phi }_{\leq 3}(\theta )$ }}{112}{figure.32.4}}
\newlabel{fig:theta5}{{32.4}{112}{${\hat \Phi }_{\leq 3}(\theta )$}{figure.32.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.5}{\ignorespaces Plot of ${\mathaccentV {hat}05E\Phi }_{\leq C}(\theta )$ for $C=5$ and $10$}}{112}{figure.32.5}}
\newlabel{fig:theta_C-5-10}{{32.5}{112}{Plot of ${\hat \Phi }_{\leq C}(\theta )$ for $C=5$ and $10$}{figure.32.5}{}}
\citation{Note19}
\@writefile{lof}{\contentsline {figure}{\numberline {32.6}{\ignorespaces Plot of ${\mathaccentV {hat}05E\Phi }_{\leq C}(\theta )$ for $C=10$ and $100$}}{113}{figure.32.6}}
\newlabel{fig:theta_C-10-100}{{32.6}{113}{Plot of ${\hat \Phi }_{\leq C}(\theta )$ for $C=10$ and $100$}{figure.32.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32.7}{\ignorespaces Plot of ${\mathaccentV {hat}05E\Phi }_{\leq C}(\theta )$ for $C=200$ and $500$}}{113}{figure.32.7}}
\newlabel{fig:theta_C-200-500}{{32.7}{113}{Plot of ${\hat \Phi }_{\leq C}(\theta )$ for $C=200$ and $500$}{figure.32.7}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {33}How many $\theta _i$'s are there?}{114}{chapter.33}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {33.1}{\ignorespaces The staircase of the Riemann spectrum}}{114}{figure.33.1}}
\newlabel{fig:staircase-riemann-spectrum-30}{{33.1}{114}{The staircase of the Riemann spectrum\index {Riemann spectrum}}{figure.33.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {33.2}{\ignorespaces The staircase of the Riemann spectrum and the curve ${\frac  {T}{2\pi }}\qopname  \relax o{log}{\frac  {T}{2\pi e}}$}}{115}{figure.33.2}}
\newlabel{fig:staircase-riemann-spectrum-50}{{33.2}{115}{The staircase of the Riemann spectrum\index {Riemann spectrum} and the curve ${\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}$}{figure.33.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {33.3}{\ignorespaces The staircase of the Riemann spectrum looks like a smooth curve}}{115}{figure.33.3}}
\newlabel{fig:staircase-riemann-spectrum-1000}{{33.3}{115}{The staircase of the Riemann spectrum\index {Riemann spectrum} looks like a smooth curve}{figure.33.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {34}Further questions about the Riemann spectrum}{117}{chapter.34}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {34.1}{\ignorespaces Frequency histogram of Odlyzko's computation of the Riemann spectrum modulo $2\pi $ (left) and modulo 1 (right)}}{117}{figure.34.1}}
\newlabel{fig:zero-spacing}{{34.1}{117}{Frequency histogram of Odlyzko's computation of the Riemann spectrum\index {Riemann spectrum} modulo $2\pi $ (left) and modulo 1 (right)}{figure.34.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {34.2}{\ignorespaces Frequency histogram of the first 99{,}999 gaps in the Riemann spectrum}}{118}{figure.34.2}}
\newlabel{fig:riemann_spectrum_gaps}{{34.2}{118}{Frequency histogram of the first 99{,}999 gaps in the Riemann spectrum}{figure.34.2}{}}
\citation{Note20}
\@writefile{toc}{\contentsline {chapter}{\numberline {35}From the Riemann spectrum to primes}{119}{chapter.35}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {35.1}{\ignorespaces Illustration of $-\DOTSB \sum@ \slimits@ _{i=1}^{1000} \qopname  \relax o{cos}(\qopname  \relax o{log}(s)\theta _i)$, where $\theta _1 \sim 14.13, \ldots  $ are the first $1000$ contributions to the Riemann spectrum. The red dots are at the prime powers $p^n$, whose size is proportional to $\qopname  \relax o{log}(p)$.}}{120}{figure.35.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {35.2}{\ignorespaces Illustration of $-\DOTSB \sum@ \slimits@ _{i=1}^{1000} \qopname  \relax o{cos}(\qopname  \relax o{log}(s)\theta _i)$ in the neighborhood of a twin prime. Notice how the two primes $29$ and $31$ are separated out by the Fourier series, and how the prime powers $3^3$ and $2^5$ also appear.}}{120}{figure.35.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {35.3}{\ignorespaces Fourier series from $1,000$ to $1,030$ using 15,000 of the numbers $\theta _i$. Note the twin primes $1{,}019$ and $1{,}021$ and that $1{,}024=2^{10}$.}}{120}{figure.35.3}}
\@writefile{toc}{\contentsline {part}{IV\hspace  {1em}Back to Riemann}{121}{part.4}}
\newlabel{part4}{{IV}{121}{Back to Riemann}{part.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {36}Building $\pi (X)$ from the spectrum}{122}{chapter.36}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lof}{\contentsline {figure}{\numberline {36.1}{\ignorespaces Riemann defining $R(X)$ in his manuscript}}{123}{figure.36.1}}
\newlabel{fig:riemann_RX}{{36.1}{123}{Riemann\index {Riemann, Bernhard} defining $R(X)$ in his manuscript}{figure.36.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.2}{\ignorespaces The blue dots plot the values of the M\"{o}bius function $\mu (n)$, which is only defined at integers.}}{123}{figure.36.2}}
\newlabel{fig:moebius}{{36.2}{123}{The blue dots plot the values of the M\"{o}bius function\index {M\"{o}bius function} $\mu (n)$, which is only defined at integers}{figure.36.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.3}{\ignorespaces Comparisons of $\Li  (X)$ (top), $\pi (X)$ (middle), and $R(X)$ (bottom, computed using 100 terms)}}{124}{figure.36.3}}
\newlabel{fig:guess100}{{36.3}{124}{Comparisons of $\Li (X)$ (top), $\pi (X)$ (middle), and $R(X)$ (bottom, computed using 100 terms)}{figure.36.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.4}{\ignorespaces Closeup comparison of $\Li  (X)$ (top), $\pi (X)$ (middle), and $R(X)$ (bottom, computed using 100 terms)}}{124}{figure.36.4}}
\newlabel{fig:guess10000}{{36.4}{124}{Closeup comparison of $\Li (X)$ (top), $\pi (X)$ (middle), and $R(X)$ (bottom, computed using 100 terms)}{figure.36.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.5}{\ignorespaces Riemann's analytic formula for $\pi (X)$}}{124}{figure.36.5}}
\newlabel{fig:riemann_Rk}{{36.5}{124}{Riemann's\index {Riemann, Bernhard} analytic formula for $\pi (X)$}{figure.36.5}{}}
\citation{Note21}
\@writefile{lof}{\contentsline {figure}{\numberline {36.6}{\ignorespaces The function $R_{1}$ approximating the staircase of primes up to $100$}}{126}{figure.36.6}}
\newlabel{fig:rkfirst}{{36.6}{126}{The function $R_{1}$ approximating the staircase of primes up to $100$}{figure.36.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.7}{\ignorespaces The function $R_{10}$ approximating the staircase of primes up to $100$}}{126}{figure.36.7}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.8}{\ignorespaces The function $R_{25}$ approximating the staircase of primes up to $100$}}{126}{figure.36.8}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.9}{\ignorespaces The function $R_{50}$ approximating the staircase of primes up to $100$}}{127}{figure.36.9}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.10}{\ignorespaces The function $R_{50}$ approximating the staircase of primes up to $500$}}{127}{figure.36.10}}
\@writefile{lof}{\contentsline {figure}{\numberline {36.11}{\ignorespaces The function $\Li  (X)$ (top, green), the function $R_{50}(X)$ (in blue), and the staircase of primes on the interval from 350 to 400.}}{127}{figure.36.11}}
\newlabel{fig:rklast}{{36.11}{127}{The function $\Li (X)$ (top, green), the function $R_{50}(X)$ (in blue), and the staircase of primes on the interval from 350 to 400}{figure.36.11}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {37}As Riemann envisioned it}{128}{chapter.37}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:envision}{{37}{128}{As Riemann envisioned it}{chapter.37}{}}
\citation{Note22}
\@writefile{toc}{\contentsline {chapter}{\numberline {38}Companions to the zeta function}{135}{chapter.38}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:companions}{{38}{135}{Companions to the zeta function\index {zeta function}}{chapter.38}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.1}{\ignorespaces Gaussian primes with coordinates up to 10}}{136}{figure.38.1}}
\newlabel{fig:gaussian-10}{{38.1}{136}{Gaussian primes with coordinates up to 10}{figure.38.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.2}{\ignorespaces Gaussian primes with coordinates up to 100}}{137}{figure.38.2}}
\newlabel{fig:gaussian-100}{{38.2}{137}{Gaussian primes with coordinates up to 100}{figure.38.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.3}{\ignorespaces Staircase of Gaussian primes of norm up to 14}}{138}{figure.38.3}}
\newlabel{fig:gaussian-staircase-14}{{38.3}{138}{Staircase of Gaussian primes of norm up to 14}{figure.38.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.4}{\ignorespaces Staircase of Gaussian primes of norm up to 100}}{138}{figure.38.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.5}{\ignorespaces Staircase of Gaussian primes of norm up to 1000}}{139}{figure.38.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {38.6}{\ignorespaces Staircase of Gaussian primes of norm up to 10000}}{139}{figure.38.6}}
\newlabel{fig:gaussian-staircase-10000}{{38.6}{139}{Staircase of Gaussian primes of norm up to 10000}{figure.38.6}{}}
\bibdata{biblio,notes2bib-rh}
\bibcite{Note01}{1}
\@writefile{toc}{\contentsline {chapter}{Endnotes}{141}{figure.38.6}}
\bibcite{Note02}{2}
\newlabel{bibnote:factor}{{2}{144}{\bibname }{theorem.39.0.2}{}}
\bibcite{Note03}{3}
\bibcite{Note04}{4}
\bibcite{Note05}{5}
\bibcite{Note06}{6}
\bibcite{Note07}{7}
\bibcite{Note08}{8}
\bibcite{Note09}{9}
\bibcite{Note10}{10}
\bibcite{Note11}{11}
\bibcite{Note12}{12}
\bibcite{Note13}{13}
\bibcite{Note14}{14}
\bibcite{Note15}{15}
\bibcite{Note16}{16}
\bibcite{Note17}{17}
\bibcite{Note18}{18}
\@writefile{lof}{\contentsline {figure}{\numberline {39.1}{\ignorespaces $\Psi '(t)$ is a (weighted) sum of Dirac delta functions at the logarithms of prime powers $p^n$ weighted by $\qopname  \relax o{log}(p)$ (and by $\qopname  \relax o{log}(2\pi )$ at $0$). The taller the arrow, the larger the weight.}}{148}{figure.39.1}}
\bibcite{Note19}{19}
\@writefile{lof}{\contentsline {figure}{\numberline {39.2}{\ignorespaces Illustration of the staircase $\psi (X)$ constructed in Chapter\nobreakspace  {}\ref  {sec:tinkering} that counts weighted prime powers.}}{149}{figure.39.2}}
\newlabel{fig:psi_200}{{39.2}{149}{Illustration of the staircase $\psi (X)$ constructed in Chapter~\ref {sec:tinkering} that counts weighted prime powers}{figure.39.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {39.3}{\ignorespaces Andrew Granville}}{149}{figure.39.3}}
\bibcite{Note20}{20}
\bibcite{Note21}{21}
\bibcite{Note22}{22}
\TotalNotes {22}