William Stein -- Talk for Mathematics is a long conversation: a celebration of Barry Mazur
\BOOKMARK [0][-]{chapter*.2}{Preface}{}% 1
\BOOKMARK [-1][-]{part.1}{I The Riemann Hypothesis}{}% 2
\BOOKMARK [0][-]{chapter.1}{Thoughts about numbers}{part.1}% 3
\BOOKMARK [0][-]{chapter.2}{What are prime numbers?}{part.1}% 4
\BOOKMARK [0][-]{chapter.3}{``Named'' prime numbers}{part.1}% 5
\BOOKMARK [0][-]{chapter.4}{Sieves}{part.1}% 6
\BOOKMARK [0][-]{chapter.5}{Questions about primes}{part.1}% 7
\BOOKMARK [0][-]{chapter.6}{Further questions about primes}{part.1}% 8
\BOOKMARK [0][-]{chapter.7}{How many primes are there?}{part.1}% 9
\BOOKMARK [0][-]{chapter.8}{Prime numbers viewed from a distance}{part.1}% 10
\BOOKMARK [0][-]{chapter.9}{Pure and applied mathematics}{part.1}% 11
\BOOKMARK [0][-]{chapter.10}{A probabilistic first guess }{part.1}% 12
\BOOKMARK [0][-]{chapter.11}{What is a ``good approximation''?}{part.1}% 13
\BOOKMARK [0][-]{chapter.12}{Square root error and random walks}{part.1}% 14
\BOOKMARK [0][-]{chapter.13}{What is Riemann's Hypothesis?}{part.1}% 15
\BOOKMARK [0][-]{chapter.14}{The mystery moves to the error term}{part.1}% 16
\BOOKMARK [0][-]{chapter.15}{Ces\340ro smoothing}{part.1}% 17
\BOOKMARK [0][-]{chapter.16}{ A view of |`39`42`"613A``45`47`"603ALi\(X\) - \(X\)|}{part.1}% 18
\BOOKMARK [0][-]{chapter.17}{The Prime Number Theorem}{part.1}% 19
\BOOKMARK [0][-]{chapter.18}{The staircase of primes}{part.1}% 20
\BOOKMARK [0][-]{chapter.19}{Tinkering with the staircase of primes}{part.1}% 21
\BOOKMARK [0][-]{chapter.20}{Computer music files and prime numbers}{part.1}% 22
\BOOKMARK [0][-]{chapter.21}{The word ``Spectrum"}{part.1}% 23
\BOOKMARK [0][-]{chapter.22}{Spectra and trigonometric sums }{part.1}% 24
\BOOKMARK [0][-]{chapter.23}{The spectrum and the staircase of primes}{part.1}% 25
\BOOKMARK [0][-]{chapter.24}{To our readers of Part I}{part.1}% 26
\BOOKMARK [-1][-]{part.2}{II Distributions}{}% 27
\BOOKMARK [0][-]{chapter.25}{Slopes of graphs that have no slopes}{part.2}% 28
\BOOKMARK [0][-]{chapter.26}{Distributions}{part.2}% 29
\BOOKMARK [0][-]{chapter.27}{Fourier transforms: second visit}{part.2}% 30
\BOOKMARK [0][-]{chapter.28}{Fourier transform of delta}{part.2}% 31
\BOOKMARK [0][-]{chapter.29}{Trigonometric series}{part.2}% 32
\BOOKMARK [0][-]{chapter.30}{A sneak preview of Part III}{part.2}% 33
\BOOKMARK [-1][-]{part.3}{III The Riemann Spectrum of the Prime Numbers}{}% 34
\BOOKMARK [0][-]{chapter.31}{On losing no information}{part.3}% 35
\BOOKMARK [0][-]{chapter.32}{From primes to the Riemann spectrum}{part.3}% 36
\BOOKMARK [0][-]{chapter.33}{How many i's are there?}{part.3}% 37
\BOOKMARK [0][-]{chapter.34}{Further questions about the Riemann spectrum}{part.3}% 38
\BOOKMARK [0][-]{chapter.35}{From the Riemann spectrum to primes}{part.3}% 39
\BOOKMARK [-1][-]{part.4}{IV Back to Riemann}{}% 40
\BOOKMARK [0][-]{chapter.36}{Building \(X\) from the spectrum}{part.4}% 41
\BOOKMARK [0][-]{chapter.37}{As Riemann envisioned it}{part.4}% 42
\BOOKMARK [0][-]{chapter.38}{Companions to the zeta function}{part.4}% 43
\BOOKMARK [0][-]{figure.38.6}{Endnotes}{part.4}% 44