kevinlui's site
\documentclass[addpoints]{exam}1\usepackage{amsmath}2\usepackage{amsfonts}34\makeatletter5\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%6\hskip -\arraycolsep7\let\@ifnextchar\new@ifnextchar8\array{#1}}9\makeatother1011\newcommand{\rank}{\mathrm{rank}}12\newcommand{\nullity}{\mathrm{nullity}}13\newcommand{\spn}{\mathrm{span}}14\newcommand{\col}{\mathrm{col}}15\newcommand{\row}{\mathrm{row}}16\newcommand{\nll}{\mathrm{null}}17\newcommand{\range}{\mathrm{range}}1819\printanswers2021\pagestyle{headandfoot}22\runningheadrule23\firstpageheader{}{}{}24\runningheader{Math 308L Autumn 2017}25{Midterm 2, Page \thepage\ of \numpages}26{November 15, 2017}27\firstpagefooter{}{\thepage}{}28\runningfooter{}{\thepage}{}2930\begin{document}3132\begin{center}33Math 308L - Autumn 20173435Midterm 23637November 15, 201738\end{center}3940\ifprintanswers41\textbf{\huge KEY}42\else43Name: \hrulefill4445Student ID Number: \hrulefill46\fi4748\vspace{0.3cm}4950\begin{center}51\gradetable[v][questions]52\end{center}5354\vspace{0.3cm}5556\begin{itemize}57\item58There are 5 problems on this exam. Be sure you have all 5 problems on59your exam.60\item61The final answer must be left in exact form. Box your final answer.62\item63You are allowed the TI-30XIIS calculator. It is possible to complete64the exam without a calculator.65\item66You are allowed a single sheet of 2-sided handwritten self-written notes.67\item68You must show your work to receive full credit. A correct answer69with no supporting work will receive a zero.70\item71Use the backsides if you need extra space. Make a note of this if you72do.73\item74Do not cheat. This exam should represent your own work. If you are75caught cheating, I will report you to the Community Standards and76Student Conduct office.77\end{itemize}7879\textbf{Conventions}:80\begin{itemize}81\item82I will often denote the zero vector by $0$.83\item84When I define a variable, it is defined for that whole question. The $A$85defined in Question 1 is the same for each part.86\item87I often use $x$ to denote the vector $(x_1,x_2,\ldots,x_n)$. It should be clear from context.88\item89Sometimes I write vectors as a row and sometimes as a column. The90following are the same to me.91\[92(1,2,3) \quad93\begin{bmatrix}941 \\952 \\96397\end{bmatrix}.98\]99\item100I write the evaluation of linear transforms in a few ways. The101following are the same to me.102\[103T(1,2,3) \quad T((1,2,3)) \quad T \left(104\begin{bmatrix}1051 \\ 2\\ 3106\end{bmatrix}107\right)108\]109\end{itemize}110111112\newpage113114\begin{questions}115116\question117Answer the following parts:118\begin{parts}119\part[6]120Let121\[122A=123\begin{bmatrix}1241 & 3 & 2 \\1250 & 1 & 1 \\1260 & 0 & 3127\end{bmatrix}.128\]129\begin{subparts}130\subpart131What is $A^{-1}$?132\begin{solution}133\[134A^{-1}=135\begin{bmatrix}1361 & -3 & 1/3 \\1370 & 1 & -1/3 \\1380 & 0 & 1/3139\end{bmatrix}140\]141\end{solution}142\vfill143\vfill144\subpart145What is $\det(2\cdot A^{-1})$?146\begin{solution}147\[148\det(2\cdot A^{-1})=2^3 \det(A^{-1}) = 8/3.149\]150\end{solution}151\vfill152\end{subparts}153\part[6]154(Tricky.) Let155\[156B=157\begin{bmatrix}1581 & 1 & 11 \\159-1 & 0 & 15 \\1601 & 2 & 2017161\end{bmatrix},162\quad163y=164\begin{bmatrix}1651 \\ -2 \\ 0166\end{bmatrix}.167\]168It turns out that $y$ is in the span of the first and second column of169$B$ and $B$ is invertible. What is $B^{-1}y$? (Hint: Despite170appearances, this is a quick computation.)171\begin{solution}172Denote the columns of $B$ by $b_1,b_2,b_3$. Let $B^{-1}y=x$. Then173$Bx=y$ and we are trying to find $x$. This amounts to solving a174linear system. If $x=(x_1,x_2,x_3)$, then175\[176x_1b_1+x_2b_2+x_3b_3 = y.177\]178But we know that $y$ is in the span of $b_1$ and $b_2$ so $x_3=0$179and we are left with180\[181x_1b_1+x_2b_2 = y.182\]183This yields the much easier linear system184\[185\begin{bmatrix}[cc|c]1861 & 1 & 1 \\187-1 & 0 & -2 \\1881 & 2 & 0189\end{bmatrix}190\]191which has solutions $x_1=2$ and $x_2=-1$. So altogether, we have192\[193(x_1,x_2,x_3)=(2,-1,0).194\]195\end{solution}196\vfill197\vfill198\vfill199\end{parts}200201\newpage202203\question204Give an example of each of the following. If it is not possible, write205``NOT POSSIBLE''.206\begin{parts}207\part[3]208Give an example of 2 linear transforms $T:\mathbb{R}^3\to \mathbb{R}^2$209and $S:\mathbb{R}^2\to\mathbb{R}^3$ such that $T\circ210S:\mathbb{R}^2\to\mathbb{R}^2$ is invertible.211\begin{solution}212Let $T(x,y,z)=(x,y)$ and $S(x,y)=(x,y,0)$. Then $(T\circ213S)(x,y)=(x,y)$ which is the identity transform which is invertible.214\end{solution}215\vfill216\part[3]217Give an example of a basis for $\mathbb{R}^3$ such that every basis218element lies in the plane $x+y+z=0$.219\begin{solution}220NOT POSSIBLE. The set $x+y+z=0$ is a 2-dimensional subspace. There221is no basis of $\mathbb{R}^3$ that lie in a 2-dimensional subspace.222\end{solution}223\vfill224\part[3]225Give an example of two different matrices $A$ and $B$ such that226$\col(A)=\col(B)$ and $\nll(A)=\nll(B)$.227\begin{solution}228Pick your favorite natural number $n$. Let $A=I_n$ and $B=2\cdot229I_n$. Then $\col(A)=\col(B)=\mathbb{R}^n$ and230$\nll(A)=\nll(B)=\{0\}$.231\end{solution}232\vfill233\part[3]234Give an example of two $2\times 2$ matrices $A$ and $B$ such that235$\det(A + B) \neq \det(A) + \det(B)$.236\begin{solution}237Let $A=I_2$ and $B=I_2$. Then238\[239\det(A+B)=4 \quad \text{and} \quad \det(A)=\det(B)=1.240\]241\end{solution}242\vfill243\end{parts}244245\newpage246247\question248Let $v=(1,1,-1)$ and $L_v=\spn(\{v\})$. Let $T:\mathbb{R}^3\to\mathbb{R}^3$249be the linear transform that is the projection onto $L_v$. This tells us 2250things about $T$:251\begin{itemize}252\item253$T(x)=x$ if $x\in L_v$,254\item255$T(x)=0$ if $x$ is orthogonal to $v$ (so if $x\cdot v=0$).256\end{itemize}257There exists a matrix $A$ such that $T(x)=Ax$. The goal of this problem is258to determine $A$.259260\begin{parts}261\part[4]262Give a basis for $\mathbb{R}^3$ that contains $v$ and 2 vectors263orthogonal to $v$. (Hint: Recall that $(a_1,a_2,a_3)\cdot264(b_1,b_2,b_3)=a_1b_1+a_2b_2+a_3b_3$.)265\begin{solution}266There are two methods to find 2 vectors orthogonal to $v$.267\begin{itemize}268\item269Eyeball it.270\item271Find 2 particular solutions to $v\cdot272(x,y,z)=x+y-z=0$.273\end{itemize}274We find that $(1,0,1)$ and $(0,1,1)$ are distinct vector orthogonal275to $v$. A basis for $\mathbb{R}^3$ is then given by276\[277\{v,(1,0,1),(0,1,1)\}.278\]279\end{solution}280\vfill281\vfill282\part[4]283Answer the following questions about $A$.284\begin{subparts}285\subpart286Give a basis for $\nll(A)$.287\begin{solution}288The null space of $A$ is the kernel of $T$. We see that this is289spanned by $\{(1,0,1),(0,1,1)\}$.290\end{solution}291\vfill292\subpart293Give a basis for $\col(A)$.294\begin{solution}295We can see that $T$ sends everything to $L_v$ so a basis for296$\col(A)=\range(T)$ is $\{v\}$.297\end{solution}298\vfill299\subpart300What is the rank of $A$?301\begin{solution}302From the last part, we can see that the rank is 1.303\end{solution}304\vfill305\subpart306What is $\det(A)$?307\begin{solution}308The determinant of $A$ is zero as $T$ is not invertible.309\end{solution}310\vfill311\end{subparts}312\part[4]313What is $A$? You may express $A$ as a product of matrices and their inverses.314\begin{solution}315From past worksheets and lectures, we know that if316$\{u_1,\ldots,u_n\}$ is a basis for $\mathbb{R}^n$ and317$T:\mathbb{R}^n\to\mathbb{R}^n$ is defined so that $T(u_i)=v_i$ for318$i=1,\ldots,n$ then the corresponding matrix for $T$ is given by319$VU^{-1}$, where $V=[v_i]$ and $U=[u_i]$.320321In this case, we have that $T(v)=v$ and $T(1,0,1)=(0,0,0)$ and322$T(0,1,1)=(0,0,0)$. The corresponding matrix is323\[324A=325\begin{bmatrix}3261 & 0 & 0 \\3271 & 0 & 0 \\328-1 & 0 & 0329\end{bmatrix}330\begin{bmatrix}3311 & 1 & 0 \\3321 & 0 & 1 \\333-1 & 1 & 1334\end{bmatrix}^{-1}.335\]336\end{solution}337\vfill338\vfill339\vfill340\vfill341\end{parts}342343\newpage344345\question346Let $T:\mathbb{R}^4 \to \mathbb{R}^3$ be the linear transform defined by347$T(x)=Ax$, where $A$ and its reduced echelon form are defined as follows:348\[349A=350\begin{bmatrix}3511 & 2 & -1 & -3 \\3522 & 4 & 0 & -4 \\3533 & 6 & -1 & -7354\end{bmatrix}355\sim356\begin{bmatrix}3571 & 2 & 0 & -2 \\3580 & 0 & 1 & 1 \\3590 & 0 & 0 & 0360\end{bmatrix}361= B.362\]363To save time when writing the solutions, let's denote the columns of $A$ by364$a_1,a_2,a_3,a_4$.365\begin{parts}366\part[3]367What is a basis for $\row(A)$?368\begin{solution}369A basis for $\row(A)$ is given by the 2 nonzero rows of $B$.370\end{solution}371\vfill372\part[3]373What a basis for the range of $T$?374\begin{solution}375A basis for the range is given by $\{a_1,a_3\}$.376\end{solution}377\vfill378\part[3]379Write the columns of $A$ corresponding to free variables as a linear380combination of pivot columns of $A$.381\begin{solution}382Relations among the columns of $A$ are exactly the relations among383the columns of $B$. This means384\[385a_2 = 2 a_1 \quad \text{and} \quad a_4 = -2a_1 + a_3.386\]387\end{solution}388\vfill389\part[3]390What is a basis for $\ker(T)$?391\begin{solution}392The general solution to $A$ is $x=s_1(-2,1,0,0)+s_2(2,0,-1,1)$.393This means that a basis for $\ker(T)$ is394$\{(-2,1,0,0),(2,0,-1,1)\}$.395\end{solution}396\vfill397\end{parts}398399\newpage400401\question402Let $A$ and $B$ be equivalent matrices given by403\[404A =405\begin{bmatrix}4062 & 4 & -1 & -2 \\407-1 & -3 & -1 & 0 \\4081 & 1 & 2 & 2 \\4092 & 6 & 2 & 0410\end{bmatrix}411\sim412\begin{bmatrix}4131 & 0 & 0 & 1/2 \\4140 & 1 & 0 & -1/2 \\4150 & 0 & 1 & 1 \\4160 & 0 & 0 & 0417\end{bmatrix}418= B.419\]420Let $a_1,a_2,a_3,a_4$ be the columns of $A$. Let $S=\spn(\{a_1,a_2\})$ and421$T=\spn(\{a_3,a_4\})$.422\begin{parts}423\part[2]424What is $\dim(\spn(\{a_1,a_2,a_3,a_4\}))$?425\begin{solution}426This is asking for the rank of $A$ which is 3 because there are 3427nonzero rows of $B$.428\end{solution}429\vfill430\part[2]431What is a basis for $\nll(A)$?432\begin{solution}433The general solution to $A$ is $x=s_1(-1/2,1/2,-1,1)$. This means434that a basis for $\nll(A)$ is $\{(-1/2,1/2,-1,1)\}$.435\end{solution}436\vfill437\part[2]438Denote that intersection of $S$ and $T$ by $S\cap T$. This is the439subspace of vectors that are in $\spn(\{a_1,a_2\})$ \textbf{and} in440$\spn(\{a_3,a_4\})$. What is $\dim(S\cap T)$?441\begin{solution}442We can see that $S$ and $T$ are distinct 2-dimensional spaces in443$\col(A)$ which is a 3-dimensional space. This means that the444intersection is 1-dimensional. This is the more geometric idea. See445the next answer for the more algebraic one.446\end{solution}447\vfill448\part[6]449(Hard.) What is a basis for $S\cap T$?450\begin{solution}451We will investigate what it means for a vector to be in $S\cap T$.452Suppose $v\in S\cap T$. This means that we can write $v$ as a453linear combination of $a_1,a_2$ and as a linear combination of454$a_3,a_4$. So there exists scalar $c_1,c_2,c_3,c_4$ such that455\[456v=c_1a_1+c_2a_2=c_3a_3+c_4a_4.457\]458The goal is to determine the constraints on $c_1,c_2,c_3,c_4$. By459rearranging, this means that460\[461c_1a_1+c_2a_2 - c_3a_3 - c_4a_4=0.462\]463This means that $(c_1,c_2,-c_3,-c_4)\in \nll(A)$. Then464$(c_1,c_2,-c_3,-c_4)=s_1(-1/2,1/2,-1,1)$ for some $s_1$. So465\begin{equation}466\label{a}467v=-1/2s_1a_1+1/2s_1a_2468\end{equation}469for some $s_1$. The equation \eqref{a} characterizes all $v\in S\cap470T$. We can see that it is a 1-dimensional space. A basis is471obtained by plugging in any nonzero $s_1$ into \eqref{a} so a basis472for $S\cap T$ is $\{a_1-a_2\}$.473\end{solution}474\vfill475\vfill476\vfill477\end{parts}478479\end{questions}480481\end{document}482483484