kevinlui's site
\newcommand{\proj}{\mathrm{proj}} \newcommand{\spn}{\mathrm{span}}
Projection and the Gram-Schmidt Process
The goal this class is to find orthonormal basis for a subspace.
Example:
What is an orthonormal basis for the span of ?
How would we do it with 3 vectors?
Definition: Let with nonzero. Then the projection of u onto v is given by ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_v u=\frac{u\cd….
Theorem: Let and be a nonzero scalar. Then
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_v u is in ParseError: KaTeX parse error: Undefined control sequence: \spn at position 1: \̲s̲p̲n̲{v}.
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 3: u-\̲p̲r̲o̲j̲_v u is orthogonal to
if is in ParseError: KaTeX parse error: Undefined control sequence: \spn at position 1: \̲s̲p̲n̲{v}, then ParseError: KaTeX parse error: Undefined control sequence: \proj at position 3: u=\̲p̲r̲o̲j̲_v u.
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_v u = \proj_cv….
Let be a nontrivial subspace with orthogonal basis . Then the projection of onto is given by ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_S u=\sum\sb{i=….
Theorem: Let be a nonzero subspace of with orthogonal basis , and let be a vector in . Then
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_S u is in .
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 3: u-\̲p̲r̲o̲j̲_S u is orthogonal to .
if is in , then ParseError: KaTeX parse error: Undefined control sequence: \proj at position 3: u=\̲p̲r̲o̲j̲_S u.
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 1: \̲p̲r̲o̲j̲_S u is independent of the choice of orthogonal basis for .
Theorem: (The Gram-Schmidt Process) Let be a subspace with basis . Define by
,
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 9: v_2=s_2-\̲p̲r̲o̲j̲\sb{v_1}s_2,
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 9: v_3=s_3-\̲p̲r̲o̲j̲\sb{v_1}s_3-\pr…,
...
ParseError: KaTeX parse error: Undefined control sequence: \proj at position 9: v_k=s_k-\̲p̲r̲o̲j̲\sb{v_1}s_k-\ld…
Then is an orthogonal basis. To make it orthonormal, just normalize each element.
Example: Find an orthonormal basis for the subspace .