kevinlui's site
\documentclass{exam}1\usepackage{amsmath}2\usepackage{amsfonts}34\begin{document}56\begin{center}7Worksheet 4 - Due 10/278\end{center}9\begin{questions}10\question11Find an example of each of the following. If it is not possible, write NOT12POSSIBLE.13\begin{parts}14\part15Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to16\mathbb{R}^3$ (this means they are both from $\mathbb{R}^3$ to17$\mathbb{R}^3$) such that $S$ is onto but $S\circ T$ (this is the18function given by $(S\circ T)(x)=S(T(x))$) is not.19\part20Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to21\mathbb{R}^3$ such that $T$ is onto but $S\circ T$ is not.22\part23Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to24\mathbb{R}^3$ such that $S$ is one-to-one but $S\circ T$ is not.25\part26Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to27\mathbb{R}^3$ such that $T$ is one-to-one but $S\circ T$ is not.28\end{parts}2930\question31Give a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that32$T(1,1)=(2,3)$ and $T(-1,2)=(0,1)$. Do this using matrix inverses.3334\question35Find an example of each of the following. If it is not possible, write NOT36POSSIBLE.37\begin{parts}38\part39Give an example of a linear transformation40$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the41$x$-axis.42\part43Give an example of a linear transformation44$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the45$x=y$ line.46\part47Give an example of a linear transformation48$T:\mathbb{R}^2\to\mathbb{R}^2$ that shifts every point up by one unit.49\end{parts}50\end{questions}5152\end{document}535455