Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
5
\begin{document}
6
7
\begin{center}
8
Worksheet 4 - Due 10/27
9
\end{center}
10
\begin{questions}
11
\question
12
Find an example of each of the following. If it is not possible, write NOT
13
POSSIBLE.
14
\begin{parts}
15
\part
16
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
17
\mathbb{R}^3$ (this means they are both from $\mathbb{R}^3$ to
18
$\mathbb{R}^3$) such that $S$ is onto but $S\circ T$ (this is the
19
function given by $(S\circ T)(x)=S(T(x))$) is not.
20
\part
21
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
22
\mathbb{R}^3$ such that $T$ is onto but $S\circ T$ is not.
23
\part
24
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
25
\mathbb{R}^3$ such that $S$ is one-to-one but $S\circ T$ is not.
26
\part
27
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
28
\mathbb{R}^3$ such that $T$ is one-to-one but $S\circ T$ is not.
29
\end{parts}
30
31
\question
32
Give a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that
33
$T(1,1)=(2,3)$ and $T(-1,2)=(0,1)$. Do this using matrix inverses.
34
35
\question
36
Find an example of each of the following. If it is not possible, write NOT
37
POSSIBLE.
38
\begin{parts}
39
\part
40
Give an example of a linear transformation
41
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
42
$x$-axis.
43
\part
44
Give an example of a linear transformation
45
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
46
$x=y$ line.
47
\part
48
Give an example of a linear transformation
49
$T:\mathbb{R}^2\to\mathbb{R}^2$ that shifts every point up by one unit.
50
\end{parts}
51
\end{questions}
52
53
\end{document}
54
55