kevinlui's site
\documentclass{exam}1\usepackage{amsmath}2\usepackage{amsfonts}34\printanswers56\begin{document}78\begin{center}9Worksheet 4 - Due 10/2710\end{center}11\begin{questions}12\question13Find an example of each of the following. If it is not possible, write NOT14POSSIBLE.15\begin{parts}16\part17Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to18\mathbb{R}^3$ (this means they are both from $\mathbb{R}^3$ to19$\mathbb{R}^3$) such that $S$ is onto but $S\circ T$ (this is the20function given by $(S\circ T)(x)=S(T(x))$) is not.21\begin{solution}22Let $S$ be the identity and $T$ be the zero transformation.23\end{solution}24\part25Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to26\mathbb{R}^3$ such that $T$ is onto but $S\circ T$ is not.27\begin{solution}28Let $T$ be the identity and $S$ be the zero transformation.29\end{solution}30\part31Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to32\mathbb{R}^3$ such that $S$ is one-to-one but $S\circ T$ is not.33\begin{solution}34Let $S$ be the identity and $T$ be the zero transformation.35\end{solution}36\part37Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to38\mathbb{R}^3$ such that $T$ is one-to-one but $S\circ T$ is not.39\begin{solution}40Let $T$ be the identity and $S$ be the zero transformation.41\end{solution}42\part43\end{parts}4445\question46Give a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that47$T(1,1)=(2,3)$ and $T(-1,2)=(0,1)$. Do this using matrix inverses.48\begin{solution}49Let $u_1=(1,1), u_2=(-1,2)$ and $v_1=(2,3),v_2=(0,1)$. Let $U=[u_1 \;50u_2]$ be the matrix formed by writing $u_1,u_2$ as columns and51$V=[v_1\; v_2]$ be the matrix formed by writing $v_1,v_2$ as columns.5253Let $F(x)=Ux$ and $G(x)=Vx$. Then we know that $F(e_1)=u_1,F(e_2)=u_2$54and $G(e_1)=v_1$ and $G(e_2)=v_2$. Since $\{u_1,u_2\}$ is linearly55indepedent, we know that $U$ and $F$ are invertible. So $G\circ F^{-1}$56sends $u_1$ to $v_1$ and $u_2$ to $v_2$, as desired. The associated57matrix to $G\circ F^{-1}$ is $VU^{-1}$.58\end{solution}5960\question61Find an example of each of the following. If it is not possible, write NOT62POSSIBLE.63\begin{parts}64\part65Give an example of a linear transformation66$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the67$x$-axis.68\begin{solution}69$T(x,y)=(x,-y)$70\end{solution}71\part72Give an example of a linear transformation73$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the74$x=y$ line.75\begin{solution}76We know that $T(1,1)=(1,1)$ and $T(-1,1)=(1,-1)$. So we can figure77out what $T$ is by doing the process in question 2.78\end{solution}79\part80Give an example of a linear transformation81$T:\mathbb{R}^2\to\mathbb{R}^2$ that shifts every point up by one unit.82\begin{solution}83NOT POSSIBLE. This function does not map zero to zer.84\end{solution}85\end{parts}86\end{questions}8788\end{document}899091