Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
5
\printanswers
6
7
\begin{document}
8
9
\begin{center}
10
Worksheet 4 - Due 10/27
11
\end{center}
12
\begin{questions}
13
\question
14
Find an example of each of the following. If it is not possible, write NOT
15
POSSIBLE.
16
\begin{parts}
17
\part
18
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
19
\mathbb{R}^3$ (this means they are both from $\mathbb{R}^3$ to
20
$\mathbb{R}^3$) such that $S$ is onto but $S\circ T$ (this is the
21
function given by $(S\circ T)(x)=S(T(x))$) is not.
22
\begin{solution}
23
Let $S$ be the identity and $T$ be the zero transformation.
24
\end{solution}
25
\part
26
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
27
\mathbb{R}^3$ such that $T$ is onto but $S\circ T$ is not.
28
\begin{solution}
29
Let $T$ be the identity and $S$ be the zero transformation.
30
\end{solution}
31
\part
32
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
33
\mathbb{R}^3$ such that $S$ is one-to-one but $S\circ T$ is not.
34
\begin{solution}
35
Let $S$ be the identity and $T$ be the zero transformation.
36
\end{solution}
37
\part
38
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
39
\mathbb{R}^3$ such that $T$ is one-to-one but $S\circ T$ is not.
40
\begin{solution}
41
Let $T$ be the identity and $S$ be the zero transformation.
42
\end{solution}
43
\part
44
\end{parts}
45
46
\question
47
Give a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that
48
$T(1,1)=(2,3)$ and $T(-1,2)=(0,1)$. Do this using matrix inverses.
49
\begin{solution}
50
Let $u_1=(1,1), u_2=(-1,2)$ and $v_1=(2,3),v_2=(0,1)$. Let $U=[u_1 \;
51
u_2]$ be the matrix formed by writing $u_1,u_2$ as columns and
52
$V=[v_1\; v_2]$ be the matrix formed by writing $v_1,v_2$ as columns.
53
54
Let $F(x)=Ux$ and $G(x)=Vx$. Then we know that $F(e_1)=u_1,F(e_2)=u_2$
55
and $G(e_1)=v_1$ and $G(e_2)=v_2$. Since $\{u_1,u_2\}$ is linearly
56
indepedent, we know that $U$ and $F$ are invertible. So $G\circ F^{-1}$
57
sends $u_1$ to $v_1$ and $u_2$ to $v_2$, as desired. The associated
58
matrix to $G\circ F^{-1}$ is $VU^{-1}$.
59
\end{solution}
60
61
\question
62
Find an example of each of the following. If it is not possible, write NOT
63
POSSIBLE.
64
\begin{parts}
65
\part
66
Give an example of a linear transformation
67
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
68
$x$-axis.
69
\begin{solution}
70
$T(x,y)=(x,-y)$
71
\end{solution}
72
\part
73
Give an example of a linear transformation
74
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
75
$x=y$ line.
76
\begin{solution}
77
We know that $T(1,1)=(1,1)$ and $T(-1,1)=(1,-1)$. So we can figure
78
out what $T$ is by doing the process in question 2.
79
\end{solution}
80
\part
81
Give an example of a linear transformation
82
$T:\mathbb{R}^2\to\mathbb{R}^2$ that shifts every point up by one unit.
83
\begin{solution}
84
NOT POSSIBLE. This function does not map zero to zer.
85
\end{solution}
86
\end{parts}
87
\end{questions}
88
89
\end{document}
90
91