kevinlui's site
\documentclass{exam}1\usepackage{hyperref}2\usepackage{amsmath}3\usepackage{amsfonts}45\printanswers67\begin{document}89\begin{center}10Worksheet 6 - Due 11/1011\end{center}1213\begin{questions}14\question15You should be familiar with the theorem here: \url{http://kevinlui.org/au17m308/log/4-review.html}16\begin{parts}17\part18There is a somewhat obvious error. Find it.19\begin{solution}20It turns out there are (at least?) 2 errors.21\begin{itemize}22\item23``Let $A=[a_1,\ldots,a_m]$ be a matrix...'' The matrix24$A$ is of the wrong dimension.25\item26``number of rows of all zeros in $B$.'' This is the27nullity of $A$ instead of the null space.28\end{itemize}29\end{solution}30\part31Write down all the different ways to express the nullity.32\begin{solution}33Here we use the same set up as in here: http://kevinlui.org/au17m308/log/4-review.html34\begin{itemize}35\item36$nullity(A)$37\item38$dim(null(A))$39\item40$nullity(B)$41\item42$dim(null(B))$43\item44$dim(ker(T))$45\item46number of free variables in $B$47\item48$m-rank(A)$49\item50number of vectors required to span the solution space51of $Ax=0$.52\end{itemize}53\end{solution}54\end{parts}5556\question57What is the absolute value of the determinant of the matrix in problem 2 of58worksheet 5?59\begin{solution}60The matrix in question defines a reflection across some plane. This61preserves volume so the absolute value of the determinant should be 1.62\end{solution}63\end{questions}6465\end{document}666768