kevinlui's site
\documentclass{exam}1\usepackage{hyperref}2\usepackage{amsmath}3\usepackage{amsfonts}45\begin{document}67\begin{center}8Worksheet 7 - 11/179\end{center}1011\begin{questions}12\question13Is the union of two subspaces always a subspace? If not, give a counterexample.14\question15Is the intersection of two subspaces always a subspace? If not, give a16counterexample.17\question18Let's compute a determinant using guassian elimination. Let19\[20A=21\begin{bmatrix}222 & -1 & 2 \\232 & -1 & 1 \\240 & 3 & 125\end{bmatrix}26\]27We will determine what row operations do to the determinant of a matrix.28\begin{parts}29\part30What is $\det(A)$?31\part32What is the effect of swapping two rows of a matrix on the determinant?33Try swapping the first two rows of $A$ and computing the determinant of34the resulting matrix.35\part36What is the effect of scale multiplying a row of a matrix on the37determinant? Try scale multiplying the 2nd row of $A$ by 2 and38computing the determinant of the resulting matrix.39\part40What is the effect of adding a multiple a row to another row on the41determinant? Try adding twice the first row to the second and computing42the determinant of the resulting matrix.43\part44Use these ideas to compute the determinant of $A$ using guassian45elimination. If you are stuck, see the following links:46\begin{itemize}47\item48\url{https://en.wikipedia.org/wiki/Gaussian_elimination#Computing_determinants}49\item50\url{https://math.stackexchange.com/questions/714974/determinant-by-applying-gaussian-elimination}51\end{itemize}52\end{parts}53\end{questions}5455\end{document}565758