kevinlui's site
\documentclass{exam}1\usepackage{hyperref}2\usepackage{amsmath}3\usepackage{amsfonts}4\newcommand{\rank}{\mathrm{rank}}5\newcommand{\nullity}{\mathrm{nullity}}6\newcommand{\nll}{\mathrm{null}}7\printanswers8\begin{document}910\begin{center}11Worksheet 8 - Never due12\end{center}1314\begin{questions}15\question16Give an example of each of the following. If it is not possible, write17``NOT POSSIBLE''.18\begin{parts}19\part20Give an example of a basis of $\mathbb{R}^4$ such that each element21lies in the hyperplane $2w+3x+y+z=0$.22\begin{solution}23NOT POSSIBLE. The hyperplane $2w+3x+y+z=0$ is a 3-dimensional24subspace. The span of any set of vectors in a 3-dimensional25subspace is at most 3-dimensional.26\end{solution}27\part28Give an example of a basis of $\mathbb{R}^4$ such that each element29lies in the hyperplane $2w+3x+y+z=1$.30\begin{solution}31Let $\{e_1,e_2,e_3,e_4\}$ be the standard basis for $\mathbb{R}^4$.32A basis for the hyperplane is given by $\{e_1/2, e_2/3, e_3, e_4\}$.33\end{solution}34\part35Give an example of a matrix that is orthogonally diagonalizable but not36diagonalizable.37\begin{solution}38NOT POSSIBLE. Any orthogonally diagonalizable matrix is39diagonalizable.40\end{solution}41\part42Give an example of a matrix that is diagonalizable but not orthogonally43diagonalizable.44\begin{solution}45A matrix is orthogonally diagonalizable if and only if it is46symmetric. This problem then amounts to finding a diagonalizable47matrix that is not symmetric. For example,48\[49\begin{bmatrix}501 & 1 \\510 & 052\end{bmatrix}53\]54This matrix is obviously not symmetric. We can see that it has55nullity 1 so 0 is an eigenvalue. It fixes $e_1$ so 1 is an56eigenvalue. It has 2 distinct eigenvalues so we know it is57diagonalizable.58\end{solution}59\part60Give an example of a nonzero matrix $A$ such that $A^2=0$.61\begin{solution}62\[63\begin{bmatrix}640 & 1 \\650 & 066\end{bmatrix}67\]68\end{solution}69\part70Give an example of a nonzero matrix $A$ such that $A^2=I$.71\begin{solution}72The easier example is73\[74\begin{bmatrix}75-176\end{bmatrix}.77\]78Any reflection matrix would work.79\end{solution}80\part81Give an example of a nonzero matrix $A$ such that $A^2=I$ and the82nullity of $A$ is 1.83\begin{solution}84NOT POSSIBLE. If $A^2=I$ then $A^{-1}=A$ so $A$ is invertible and85must have nullity 0.86\end{solution}87\part88Give an example of an orthogonal set that is not linearly independent.89\begin{solution}90$\{e_1, 0\}$.91\end{solution}92\part93Give an example of an orthogonal set that is not spanning.94\begin{solution}95$\{0\}$.96\end{solution}97\part98Give an example of a $2\times 3$ matrix whose rank is equal to its99nullity.100\begin{solution}101NOT POSSIBLE. Let $A$ be a matrix. By the rank-nullity102theorem, we know that $\rank(A)+\nullity(A)=3$. Since 3 is odd, we103know that $\rank(A)$ cannot be $\nullity(A)$.104\end{solution}105\part106Give an example of 2 matrices $A$ and $B$ such that $A^3=B^3$.107\begin{solution}108Let $A$ be the 2d-rotation matrix by $2\pi/3$ and $B$ be the1092d-rotation matrix by $-2\pi/3$. Then $A^3=B^3=I$.110\end{solution}111\part112Give an example of 2 matrices $A$ and $B$ such that $A$ and $B$ each have113nullity 1 but $AB$ has nullity 0.114\begin{solution}115NOT POSSIBLE. The nullity of $AB$ is always at least the nullity of116$B$.117\end{solution}118\part119Give an example of 2 matrices $A$ and $B$ such that $A$ and $B$ each have120nullity 0 but $AB$ has nullity 1.121\begin{solution}122NOT POSSIBLE. The main idea is that the composition of two123one-to-one functions is one-to-one.124125Suppose $A$ and $B$ are matrices with nullity 0. We will show that126$AB$ has nullity 0 as well. Let $x\in \nll(AB)$. Then $ABx=0$. This127means $A(Bx)=0$ so $Bx\in\nll(A)$. But $\nll(A)=\{0\}$ so $Bx=0$.128This means $x\in \nll(B)$ but $\nll(B)=\{0\}$ so $x=0$. This proves129that the only vectors in $\nll(AB)$ is the zero vector so the130nullity of $AB$ is 0.131\end{solution}132\part133Give an example of a diagonalizable matrix that is not invertible.134\begin{solution}135Any matrix with eigenvalue 0 is an example. For instance, the zero136matrix.137\end{solution}138\part139Give an example of an invertible matrix that is not diagonalizable.140\begin{solution}141Consider the matrix142\[143A=144\begin{bmatrix}1451 & 1 \\1460 & 1147\end{bmatrix}.148\]149This matrix is upper triangular so determining the eigenvalues150amounts to reading off the diagonal. We have that $A$ has151eigenvalue 1 with multiplicity 2. But the eigenspace corresponding152to 1 has dimension 1. This means $A$ is not diagonalizable.153154The matrix $A$ is invertible because the determinant is 1.155\end{solution}156\part157Give an example of a symmetric matrix that is not diagonalizable.158\begin{solution}159NOT POSSIBLE. All symmetric matrices are orthogonally160diagonalizable and hence diagonalizable.161\end{solution}162\part163Give an example of a symmetric matrix that is not invertible.164\begin{solution}165Zero matrix.166\end{solution}167\part168Give an example of an orthogonal matrix that is not invertible.169\begin{solution}170NOT POSSIBLE. All orthogonal matrices, $Q$, are invertible with171inverse $Q^t$.172\end{solution}173\part174Give an example of an invertible matrix that is not orthogonal.175\begin{solution}176\[177\begin{bmatrix}1781 & 1 \\1790 & 1180\end{bmatrix}181\]182\end{solution}183\part184Give an example of a matrix with distinct eigenvalues that is not185invertible.186\begin{solution}187\[188\begin{bmatrix}1890 & 0 \\1900 & 1191\end{bmatrix}.192\]193\end{solution}194\part195Give an example of a $3\times 3$ orthogonal matrix with only one eigenvalue.196\begin{solution}197The identity matrix.198\end{solution}199\part200Give an example of a $3\times 3$ matrix whose only eigenvalue is 2.201\begin{solution}202The diagonal matrix with only 2's along the diagonal.203\end{solution}204\part205Give an example of a $3\times 3$ invertible matrix whose only206eigenvalue is 2.207\begin{solution}208The diagonal matrix with only 2's along the diagonal.209\end{solution}210\part211Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that212the algebraic multiplicity of $\lambda$ is less than the geometric213multiplicity.214\begin{solution}215NOT POSSIBLE. THe algebraic multiplicity is always at least the216geometric multiplicity.217\end{solution}218\part219Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that220the geometric multiplicity of $\lambda$ is less than the algebraic221multiplicity.222\begin{solution}223Let224\[225A =226\begin{bmatrix}2270 & 1 \\2280 & 0229\end{bmatrix}.230\]231The eigenvalue 0 has algebraic multiplicity 2 but geometric232multiplicity 1.233\end{solution}234\part235Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that236the eigenspace is 0-dimensional.237\begin{solution}238NOT POSSIBLE. A number is an eigenvalue if and only if the239corresponding eigenspace is positive-dimensional.240\end{solution}241\end{parts}242\end{questions}243244\end{document}245246247