Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass{exam}
2
\usepackage{hyperref}
3
\usepackage{amsmath}
4
\usepackage{amsfonts}
5
\newcommand{\rank}{\mathrm{rank}}
6
\newcommand{\nullity}{\mathrm{nullity}}
7
\newcommand{\nll}{\mathrm{null}}
8
\printanswers
9
\begin{document}
10
11
\begin{center}
12
Worksheet 8 - Never due
13
\end{center}
14
15
\begin{questions}
16
\question
17
Give an example of each of the following. If it is not possible, write
18
``NOT POSSIBLE''.
19
\begin{parts}
20
\part
21
Give an example of a basis of $\mathbb{R}^4$ such that each element
22
lies in the hyperplane $2w+3x+y+z=0$.
23
\begin{solution}
24
NOT POSSIBLE. The hyperplane $2w+3x+y+z=0$ is a 3-dimensional
25
subspace. The span of any set of vectors in a 3-dimensional
26
subspace is at most 3-dimensional.
27
\end{solution}
28
\part
29
Give an example of a basis of $\mathbb{R}^4$ such that each element
30
lies in the hyperplane $2w+3x+y+z=1$.
31
\begin{solution}
32
Let $\{e_1,e_2,e_3,e_4\}$ be the standard basis for $\mathbb{R}^4$.
33
A basis for the hyperplane is given by $\{e_1/2, e_2/3, e_3, e_4\}$.
34
\end{solution}
35
\part
36
Give an example of a matrix that is orthogonally diagonalizable but not
37
diagonalizable.
38
\begin{solution}
39
NOT POSSIBLE. Any orthogonally diagonalizable matrix is
40
diagonalizable.
41
\end{solution}
42
\part
43
Give an example of a matrix that is diagonalizable but not orthogonally
44
diagonalizable.
45
\begin{solution}
46
A matrix is orthogonally diagonalizable if and only if it is
47
symmetric. This problem then amounts to finding a diagonalizable
48
matrix that is not symmetric. For example,
49
\[
50
\begin{bmatrix}
51
1 & 1 \\
52
0 & 0
53
\end{bmatrix}
54
\]
55
This matrix is obviously not symmetric. We can see that it has
56
nullity 1 so 0 is an eigenvalue. It fixes $e_1$ so 1 is an
57
eigenvalue. It has 2 distinct eigenvalues so we know it is
58
diagonalizable.
59
\end{solution}
60
\part
61
Give an example of a nonzero matrix $A$ such that $A^2=0$.
62
\begin{solution}
63
\[
64
\begin{bmatrix}
65
0 & 1 \\
66
0 & 0
67
\end{bmatrix}
68
\]
69
\end{solution}
70
\part
71
Give an example of a nonzero matrix $A$ such that $A^2=I$.
72
\begin{solution}
73
The easier example is
74
\[
75
\begin{bmatrix}
76
-1
77
\end{bmatrix}.
78
\]
79
Any reflection matrix would work.
80
\end{solution}
81
\part
82
Give an example of a nonzero matrix $A$ such that $A^2=I$ and the
83
nullity of $A$ is 1.
84
\begin{solution}
85
NOT POSSIBLE. If $A^2=I$ then $A^{-1}=A$ so $A$ is invertible and
86
must have nullity 0.
87
\end{solution}
88
\part
89
Give an example of an orthogonal set that is not linearly independent.
90
\begin{solution}
91
$\{e_1, 0\}$.
92
\end{solution}
93
\part
94
Give an example of an orthogonal set that is not spanning.
95
\begin{solution}
96
$\{0\}$.
97
\end{solution}
98
\part
99
Give an example of a $2\times 3$ matrix whose rank is equal to its
100
nullity.
101
\begin{solution}
102
NOT POSSIBLE. Let $A$ be a matrix. By the rank-nullity
103
theorem, we know that $\rank(A)+\nullity(A)=3$. Since 3 is odd, we
104
know that $\rank(A)$ cannot be $\nullity(A)$.
105
\end{solution}
106
\part
107
Give an example of 2 matrices $A$ and $B$ such that $A^3=B^3$.
108
\begin{solution}
109
Let $A$ be the 2d-rotation matrix by $2\pi/3$ and $B$ be the
110
2d-rotation matrix by $-2\pi/3$. Then $A^3=B^3=I$.
111
\end{solution}
112
\part
113
Give an example of 2 matrices $A$ and $B$ such that $A$ and $B$ each have
114
nullity 1 but $AB$ has nullity 0.
115
\begin{solution}
116
NOT POSSIBLE. The nullity of $AB$ is always at least the nullity of
117
$B$.
118
\end{solution}
119
\part
120
Give an example of 2 matrices $A$ and $B$ such that $A$ and $B$ each have
121
nullity 0 but $AB$ has nullity 1.
122
\begin{solution}
123
NOT POSSIBLE. The main idea is that the composition of two
124
one-to-one functions is one-to-one.
125
126
Suppose $A$ and $B$ are matrices with nullity 0. We will show that
127
$AB$ has nullity 0 as well. Let $x\in \nll(AB)$. Then $ABx=0$. This
128
means $A(Bx)=0$ so $Bx\in\nll(A)$. But $\nll(A)=\{0\}$ so $Bx=0$.
129
This means $x\in \nll(B)$ but $\nll(B)=\{0\}$ so $x=0$. This proves
130
that the only vectors in $\nll(AB)$ is the zero vector so the
131
nullity of $AB$ is 0.
132
\end{solution}
133
\part
134
Give an example of a diagonalizable matrix that is not invertible.
135
\begin{solution}
136
Any matrix with eigenvalue 0 is an example. For instance, the zero
137
matrix.
138
\end{solution}
139
\part
140
Give an example of an invertible matrix that is not diagonalizable.
141
\begin{solution}
142
Consider the matrix
143
\[
144
A=
145
\begin{bmatrix}
146
1 & 1 \\
147
0 & 1
148
\end{bmatrix}.
149
\]
150
This matrix is upper triangular so determining the eigenvalues
151
amounts to reading off the diagonal. We have that $A$ has
152
eigenvalue 1 with multiplicity 2. But the eigenspace corresponding
153
to 1 has dimension 1. This means $A$ is not diagonalizable.
154
155
The matrix $A$ is invertible because the determinant is 1.
156
\end{solution}
157
\part
158
Give an example of a symmetric matrix that is not diagonalizable.
159
\begin{solution}
160
NOT POSSIBLE. All symmetric matrices are orthogonally
161
diagonalizable and hence diagonalizable.
162
\end{solution}
163
\part
164
Give an example of a symmetric matrix that is not invertible.
165
\begin{solution}
166
Zero matrix.
167
\end{solution}
168
\part
169
Give an example of an orthogonal matrix that is not invertible.
170
\begin{solution}
171
NOT POSSIBLE. All orthogonal matrices, $Q$, are invertible with
172
inverse $Q^t$.
173
\end{solution}
174
\part
175
Give an example of an invertible matrix that is not orthogonal.
176
\begin{solution}
177
\[
178
\begin{bmatrix}
179
1 & 1 \\
180
0 & 1
181
\end{bmatrix}
182
\]
183
\end{solution}
184
\part
185
Give an example of a matrix with distinct eigenvalues that is not
186
invertible.
187
\begin{solution}
188
\[
189
\begin{bmatrix}
190
0 & 0 \\
191
0 & 1
192
\end{bmatrix}.
193
\]
194
\end{solution}
195
\part
196
Give an example of a $3\times 3$ orthogonal matrix with only one eigenvalue.
197
\begin{solution}
198
The identity matrix.
199
\end{solution}
200
\part
201
Give an example of a $3\times 3$ matrix whose only eigenvalue is 2.
202
\begin{solution}
203
The diagonal matrix with only 2's along the diagonal.
204
\end{solution}
205
\part
206
Give an example of a $3\times 3$ invertible matrix whose only
207
eigenvalue is 2.
208
\begin{solution}
209
The diagonal matrix with only 2's along the diagonal.
210
\end{solution}
211
\part
212
Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that
213
the algebraic multiplicity of $\lambda$ is less than the geometric
214
multiplicity.
215
\begin{solution}
216
NOT POSSIBLE. THe algebraic multiplicity is always at least the
217
geometric multiplicity.
218
\end{solution}
219
\part
220
Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that
221
the geometric multiplicity of $\lambda$ is less than the algebraic
222
multiplicity.
223
\begin{solution}
224
Let
225
\[
226
A =
227
\begin{bmatrix}
228
0 & 1 \\
229
0 & 0
230
\end{bmatrix}.
231
\]
232
The eigenvalue 0 has algebraic multiplicity 2 but geometric
233
multiplicity 1.
234
\end{solution}
235
\part
236
Give an example of a matrix $A$ and an eigenvalue $\lambda$ such that
237
the eigenspace is 0-dimensional.
238
\begin{solution}
239
NOT POSSIBLE. A number is an eigenvalue if and only if the
240
corresponding eigenspace is positive-dimensional.
241
\end{solution}
242
\end{parts}
243
\end{questions}
244
245
\end{document}
246
247